题目

题意:

  n(n<=10000) 个人依次贴海报,给出每张海报所贴的范围 li,ri(1<=li<=ri<=10000000) 。求出最后还能看见多少张海报。

思路:

  由于 li ri 都比较大,所以用离散化压缩一下空间,这里可以把所有的 li ri 都放在一个结构体数组 b[i] 中排序 再离散化。

  不同的人涂的不同颜色的海报,颜色分别用1-n标记。

  add数组就是Lazy数组。 1. 涂第一种颜色所有节点 rt  ,都使它的add[rt]为当前颜色,说明这个节点包含的左右区间的范围都被涂了这种颜色。   2. 第二种颜色来涂的时候,如果经过第一种已经涂过的节点rt,就把这个点的add[rt]传给add[rt<<1]和add[rt<<1|1],再把这个点add[rt]=0。如果第二种颜色的区间包括这个节点的区间,那么就涂成这个第二种颜色,如果没包括这个区间,就放着add[rt]=0了(如果我没理解错的话。。) ,继续遍历左右子区间,直到涂了颜色。 重复这样操作。

  最后的Built函数,是遍历一遍线段树中所有的节点,记录add[rt]有几个不同的值,就是答案。注意:如果找到一个节点已经涂了颜色,就说明这个节点包含的区间已经涂了这个颜色,就直接return,不用管这个节点的子节点了。

 我也是瞎写瞎猜的

#include<iostream>
#include<cstdio>
#include <cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<cmath>
#include<set>
#include<vector>
#include<stack>
#include<queue>
#include<map>
using namespace std;
#define ll long long
#define mem(a,x) memset(a,x,sizeof(a))
#define se second
#define fi first
const ll mod=1e9+;
const int INF= 0x3f3f3f3f;
const int N=1e5+; int add[N<<];
int n,m;
int a[N<<];
int vis[N<<];
struct node
{
int v,p;
}b[N<<];
int ans=; bool cmp(node x,node y)
{
return x.v<y.v;
} void push_down(int rt)
{
if(add[rt])
{
add[rt<<]= add[rt];
add[rt<<|]= add[rt];
add[rt]=;
}
}
void Built(int l,int r,int rt)
{
if(add[rt])
{
if(!vis[add[rt]])
{
ans++;
vis[add[rt]]=;
}
return;
}
int m=l+r>>;
Built(l,m,rt<<);
Built(m+,r,rt<<|);
} void update(int x,int y,int c,int l,int r,int rt)
{
if(x<=l && r<=y)
{
add[rt]=c;
return;
}
push_down(rt);
int m=l+r>>;
if(x<=m) update(x,y,c,l,m,rt<<);
if(m<y) update(x,y,c,m+,r,rt<<|);
} int main()
{
int T,z;
cin>>T;
while(T--)
{
ans=;
mem(vis,);
//mem(add,0); scanf("%d",&n);
for(int i=;i<=n<<;i++)
{
scanf("%d",&z);
b[i].v=z; b[i].p=i;
}
sort(b+,b++n*,cmp);
int cnt=;
for(int i=;i<=n<<;i++)
{
if(b[i].v != b[i-].v)
cnt++;
a[b[i].p]=cnt;
} //离散化完毕 for(int i=;i<=n<<;i+=)
{
update(a[i], a[i+], (i+)/, ,cnt,); //每张海报涂色不同
}
Built(,n,);
cout<<ans<<endl;
}
}

离散化+线段树+lazy

Mayor's posters (离散化线段树+对lazy的理解)的更多相关文章

  1. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  2. Mayor's posters(离散化线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 54067   Accepted: 15713 ...

  3. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  4. POJ 2528 Mayor's posters(线段树/区间更新 离散化)

    题目链接: 传送门 Mayor's posters Time Limit: 1000MS     Memory Limit: 65536K Description The citizens of By ...

  5. Mayor's posters (线段树加离散化)

    个人心得:线段树也有了一定的掌握,线段树对于区间问题的高效性还是挺好的,不过当区间过大时就需要离散化了,一直不了解离散化是什么鬼,后面去看了下 离散化,把无限空间中有限的个体映射到有限的空间中去,以此 ...

  6. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

  7. D - Mayor's posters(线段树+离散化)

    题目: The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campai ...

  8. POJ-2528 Mayor's posters(线段树区间更新+离散化)

    http://poj.org/problem?id=2528 https://www.luogu.org/problem/UVA10587 Description The citizens of By ...

  9. 【POJ 2528】Mayor’s posters(线段树+离散化)

    题目 给定每张海报的覆盖区间,按顺序覆盖后,最后有几张海报没有被其他海报完全覆盖.离散化处理完区间端点,排序后再给相差大于1的相邻端点之间再加一个点,再排序.线段树,tree[i]表示节点i对应区间是 ...

随机推荐

  1. [LeetCode] 206. Reverse Linked List 反向链表

    Reverse a singly linked list. Hint: A linked list can be reversed either iteratively or recursively. ...

  2. zabbix解决中文乱码

    解决中文乱码 yum install -y wqy-microhei-fonts #解决方法 中文乱码 \cp /usr/share/fonts/wqy-microhei/wqy-microhei.t ...

  3. 【神经网络与深度学习】【计算机视觉】Fast R-CNN

    转自:https://zhuanlan.zhihu.com/p/24780395?refer=xiaoleimlnote 首先声明:本文很多内容来自两个博客: RCNN, Fast-RCNN, Fas ...

  4. javadoc 抽出代码中的注释

    背景: 在已经有的项目里面利用javadoc来抽出代码中每个类,每个方法的注释部分,形成一个文档. 方法1 利用eslipse来实现 之后会在指定的目录下生成html文档 方法2 利用命令来执行 先把 ...

  5. Visual Studio特性学习

    官方档案: https://docs.microsoft.com/en-us/visualstudio/get-started/visual-studio-ide?view=vs-2019

  6. nginx实现tcp负载均衡

    1 安装支持库 yum -y install make zlib zlib-devel gcc-c++ libtool openssl openssl-devel yum install pcre-d ...

  7. IDEA 自定义代码模板

    IDEA 自定义代码模板操作步骤:

  8. Spring 框架的概述以及Spring中基于XML的IOC配置

    Spring 框架的概述以及Spring中基于XML的IOC配置 一.简介 Spring的两大核心:IOC(DI)与AOP,IOC是反转控制,DI依赖注入 特点:轻量级.依赖注入.面向切面编程.容器. ...

  9. git简单介绍

    一种常见的版本控制工具 获取 克隆仓库 git支持以ssh或者http的方式来标识远程仓库 git clone git@github.com:username/project.git git clon ...

  10. visual studio code 命令行创建发布一个项目

    安装vs core 打开按ctrl+~键打开终端 输入dir看看有什么文件,输入md Test 创建一个文件夹,选择文件后创建一个项目 输入dotnet可以查看信息 执行dotnet --help或者 ...