bzoj 4500 矩阵 题解
题意:
有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作:
- 选择一行,该行每个格子的权值加1或减1。
- 选择一列,该列每个格子的权值加1或减1。
现在有 $ K $ 个限制,每个限制为一个三元组 $ (x,y,c) $ ,代表格子$ (x,y) $ 权值等于 $ c $ 。问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在出” $ Yes $ ”,否则输出” $ No $ ”。
这道题是个一个查分约束题,它给出 $ K $ 个条件要求即$ (x,y) $ 的权值为 $ c $ 我们可以看作 $ x $ 行的变换量 $ add[x] $ ,与第 $ y $ 列的变化量 $ add[y] $ 的和等于 $ c $ ,由于我们设置的是变化量所以是正还是负就无所谓~,所以我们可以写出 $ add[x]+add[y]=c $
等价于 $ add[y]-(-add[x])=c $
等价于 $ add[y]-(-add[x]) \geq c $ && $ add[y]-(-add[x]) \leq c $
等价于 $ add[y]-add[x]^ \geq c $ && $ add[x]^-add[y] \geq -c $
然后就可以由 $ x->y $ 连一条长为 $ c $ 的边,由 $ y->x $ 连一条长为 $ -c $ 的边
由于列与行要区分,那么令列加上 $ n $ 即可
代码
#include<bits/stdc++.h>
using namespace std;
const int size=2010;
int head[size],Next[2*size],ver[2*size],edge[2*size],deg[size],tot;
int v[size],dis[size];
int n,m,k,T;
queue<int>q;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
void add(int x,int y,int z){
ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
}
bool spfa(){
while(q.size()) q.pop();
memset(v,0,sizeof(v));
memset(deg,0,sizeof(deg));
memset(dis,0x3f,sizeof(dis));
dis[0]=0;v[0]=1;q.push(0);
while(q.size()){
int x=q.front();q.pop();v[x]=0;
if(deg[x]==n+m-1) return 0;
deg[x]++;
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(dis[y]>dis[x]+edge[i]){
dis[y]=dis[x]+edge[i];
if(!v[y]){
v[y]=1;
q.push(y);
}
}
}
}
return 1;
}
int main(){
scanf("%d",&T);
while(T--){
memset(head,0,sizeof(head));tot=0;
n=read();m=read();k=read();
for(int i=1;i<=k;++i){
int x,y,z;
x=read();y=read();z=read();
add(x,y+n,z);
add(y+n,x,-z);
}
for(int i=1;i<=n+m;++i){
add(0,i,0);
}
if(spfa()) printf("Yes\n");
else printf("No\n");
}
return 0;
}
bzoj 4500 矩阵 题解的更多相关文章
- BZOJ 4500: 矩阵
4500: 矩阵 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 326 Solved: 182[Submit][Status][Discuss] De ...
- BZOJ 4500: 矩阵 差分约束
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4500 题解: 从行向列建边,代表一个格子a[i][j],对每个顶点的所有操作可以合并在一 ...
- 【BZOJ 4500 矩阵】
Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 390 Solved: 217[Submit][Status][Discuss] Description ...
- bzoj 4500: 矩阵 差分约束系统
题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
- bzoj 4500: 矩阵【差分约束】
(x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...
- BZOJ 4500: 矩阵 带权并查集
这个思路挺巧妙的 ~ 定义一行/列的权值为操作后所整体增加的值. 那么,我们会有若干个 $a[x]+b[y]=c$ 的限制条件. 但是呢,我们发现符号是不能限制我们的(因为可加可减) 所以可以将限制条 ...
- BZOJ 1179 Atm 题解
BZOJ 1179 Atm 题解 SPFA Algorithm Tarjan Algorithm Description Input 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来 ...
- Wannafly挑战赛13 zzf的好矩阵 题解 答案解释
Wannafly挑战赛13 zzf的好矩阵 题解 文章目录 Wannafly挑战赛13 zzf的好矩阵 题解 分析 结论1 结论2 结论3 C数组对应带子说明 空白长度论述 后续黑色长度论述 能&qu ...
随机推荐
- P4279 【[SHOI2008]小约翰的游戏】
我怎么什么都不会啊\(QAQ\)博弈论怎么和期望一样玄学啊\(QAQ\) 我们分几种情况讨论: \(Case1\):只有一堆且为1,那么后手胜利 \(Case2\):每一堆都是1,那么只需要判断奇偶性 ...
- 【后缀数组】【LuoguP4051】 [JSOI2007]字符加密
题目链接 题目描述 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法. 例如'JSOI07' ...
- [BZOJ1191]超级英雄Hero
Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的 多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确 ...
- GoCN每日新闻(2019-10-11)
GoCN每日新闻(2019-10-11) GoCN每日新闻(2019-10-11) 1. golang 将数据库转换为gorm结构 https://studygolang.com/articles/2 ...
- windbg预览版,windbg preview配置win7x64双机调试
目录 一丶简介 二丶步骤 1.下载Windbg Preview (windbg预览版本) 2.配置虚拟机端口 3.虚拟机设置调试湍口 4.windbg preview开始调试. 一丶简介 Windbg ...
- DACL原理.控制文件的访问权限(文件,注册表.目录.等任何带有安全属性的对象.)
目录 一丶简介 1.DACL是什么. 2.如何创建一个自己控制的文件. 3.SDDL是个什么鬼. 二丶 编写SDDL 控制的文件 一丶简介 1.DACL是什么. DACL称为自主访问的控制列表.是应用 ...
- flume 测试 hive sink
测试flume,将数据送到hive表中,首先建表. create table order_flume( order_id string, user_id string, eval_set string ...
- 「ZJOI2019」语言
传送门 Description 给定一棵\(n\)个点的树和\(m\)条链,两个点可以联会当且仅当它们同在某一条链上,求可以联会的点的方案数 \(n,m\leq10^5\) Solution 考虑计 ...
- nacos启动与sql8.0的问题解决方法
hi all! 半年多没更新,是不是以为我消失了……直接正题~ 在搭建nacos环境的时候,有这样的一项:数据库持久化配置.(官方文档),这个配置可以灵活的帮我们进行配置而不用总是重启服务. 那么问题 ...
- Alpha总体规划 & 任务分解
目录 Alpha阶段项目目标 任务拆解和优先级 总体规划 Alpha-1任务分配 Alpha-2任务分配 Alpha阶段项目目标 初步实现北航社团小程序: 北航社团小程序基础功能(优先级中的高两级,即 ...