题意:

有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作:

  1. 选择一行,该行每个格子的权值加1或减1。
  2. 选择一列,该列每个格子的权值加1或减1。

现在有 $ K $ 个限制,每个限制为一个三元组 $ (x,y,c) $ ,代表格子$ (x,y) $ 权值等于 $ c $ 。问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在出” $ Yes $ ”,否则输出” $ No $ ”。

这道题是个一个查分约束题,它给出 $ K $ 个条件要求即$ (x,y) $ 的权值为 $ c $ 我们可以看作 $ x $ 行的变换量 $ add[x] $ ,与第 $ y $ 列的变化量 $ add[y] $ 的和等于 $ c $ ,由于我们设置的是变化量所以是正还是负就无所谓~,所以我们可以写出 $ add[x]+add[y]=c $

等价于 $ add[y]-(-add[x])=c $

等价于 $ add[y]-(-add[x]) \geq c $ && $ add[y]-(-add[x]) \leq c $

等价于 $ add[y]-add[x]^ \geq c $ && $ add[x]^-add[y] \geq -c $

然后就可以由 $ x->y $ 连一条长为 $ c $ 的边,由 $ y->x $ 连一条长为 $ -c $ 的边

至于为啥

由于列与行要区分,那么令列加上 $ n $ 即可

代码

#include<bits/stdc++.h>
using namespace std;
const int size=2010;
int head[size],Next[2*size],ver[2*size],edge[2*size],deg[size],tot;
int v[size],dis[size];
int n,m,k,T;
queue<int>q;
inline int read(){
int x=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')
f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
void add(int x,int y,int z){
ver[++tot]=y;edge[tot]=z;Next[tot]=head[x];head[x]=tot;
}
bool spfa(){
while(q.size()) q.pop();
memset(v,0,sizeof(v));
memset(deg,0,sizeof(deg));
memset(dis,0x3f,sizeof(dis));
dis[0]=0;v[0]=1;q.push(0);
while(q.size()){
int x=q.front();q.pop();v[x]=0;
if(deg[x]==n+m-1) return 0;
deg[x]++;
for(int i=head[x];i;i=Next[i]){
int y=ver[i];
if(dis[y]>dis[x]+edge[i]){
dis[y]=dis[x]+edge[i];
if(!v[y]){
v[y]=1;
q.push(y);
}
}
}
}
return 1;
}
int main(){
scanf("%d",&T);
while(T--){
memset(head,0,sizeof(head));tot=0;
n=read();m=read();k=read();
for(int i=1;i<=k;++i){
int x,y,z;
x=read();y=read();z=read();
add(x,y+n,z);
add(y+n,x,-z);
}
for(int i=1;i<=n+m;++i){
add(0,i,0);
}
if(spfa()) printf("Yes\n");
else printf("No\n");
}
return 0;
}

bzoj 4500 矩阵 题解的更多相关文章

  1. BZOJ 4500: 矩阵

    4500: 矩阵 Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 326  Solved: 182[Submit][Status][Discuss] De ...

  2. BZOJ 4500: 矩阵 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4500 题解: 从行向列建边,代表一个格子a[i][j],对每个顶点的所有操作可以合并在一 ...

  3. 【BZOJ 4500 矩阵】

    Time Limit: 1 Sec  Memory Limit: 256 MBSubmit: 390  Solved: 217[Submit][Status][Discuss] Description ...

  4. bzoj 4500: 矩阵 差分约束系统

    题目: Description 有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作: 选择一行, 该行每个格子的权值加1或减1. 选择一列, 该列每个格子的权值加1或减1. 现在有K ...

  5. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  6. bzoj 4500: 矩阵【差分约束】

    (x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...

  7. BZOJ 4500: 矩阵 带权并查集

    这个思路挺巧妙的 ~ 定义一行/列的权值为操作后所整体增加的值. 那么,我们会有若干个 $a[x]+b[y]=c$ 的限制条件. 但是呢,我们发现符号是不能限制我们的(因为可加可减) 所以可以将限制条 ...

  8. BZOJ 1179 Atm 题解

    BZOJ 1179 Atm 题解 SPFA Algorithm Tarjan Algorithm Description Input 第一行包含两个整数N.M.N表示路口的个数,M表示道路条数.接下来 ...

  9. Wannafly挑战赛13 zzf的好矩阵 题解 答案解释

    Wannafly挑战赛13 zzf的好矩阵 题解 文章目录 Wannafly挑战赛13 zzf的好矩阵 题解 分析 结论1 结论2 结论3 C数组对应带子说明 空白长度论述 后续黑色长度论述 能&qu ...

随机推荐

  1. P4279 【[SHOI2008]小约翰的游戏】

    我怎么什么都不会啊\(QAQ\)博弈论怎么和期望一样玄学啊\(QAQ\) 我们分几种情况讨论: \(Case1\):只有一堆且为1,那么后手胜利 \(Case2\):每一堆都是1,那么只需要判断奇偶性 ...

  2. 【后缀数组】【LuoguP4051】 [JSOI2007]字符加密

    题目链接 题目描述 喜欢钻研问题的JS 同学,最近又迷上了对加密方法的思考.一天,他突然想出了一种他认为是终极的加密办法:把需要加密的信息排成一圈,显然,它们有很多种不同的读法. 例如'JSOI07' ...

  3. [BZOJ1191]超级英雄Hero

    Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的 多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确 ...

  4. GoCN每日新闻(2019-10-11)

    GoCN每日新闻(2019-10-11) GoCN每日新闻(2019-10-11) 1. golang 将数据库转换为gorm结构 https://studygolang.com/articles/2 ...

  5. windbg预览版,windbg preview配置win7x64双机调试

    目录 一丶简介 二丶步骤 1.下载Windbg Preview (windbg预览版本) 2.配置虚拟机端口 3.虚拟机设置调试湍口 4.windbg preview开始调试. 一丶简介 Windbg ...

  6. DACL原理.控制文件的访问权限(文件,注册表.目录.等任何带有安全属性的对象.)

    目录 一丶简介 1.DACL是什么. 2.如何创建一个自己控制的文件. 3.SDDL是个什么鬼. 二丶 编写SDDL 控制的文件 一丶简介 1.DACL是什么. DACL称为自主访问的控制列表.是应用 ...

  7. flume 测试 hive sink

    测试flume,将数据送到hive表中,首先建表. create table order_flume( order_id string, user_id string, eval_set string ...

  8. 「ZJOI2019」语言

    传送门 Description 给定一棵\(n\)个点的树和\(m\)条链,两个点可以联会当且仅当它们同在某一条链上,求可以联会的点的方案数 \(n,m\leq10^5\) Solution  考虑计 ...

  9. nacos启动与sql8.0的问题解决方法

    hi all! 半年多没更新,是不是以为我消失了……直接正题~ 在搭建nacos环境的时候,有这样的一项:数据库持久化配置.(官方文档),这个配置可以灵活的帮我们进行配置而不用总是重启服务. 那么问题 ...

  10. Alpha总体规划 & 任务分解

    目录 Alpha阶段项目目标 任务拆解和优先级 总体规划 Alpha-1任务分配 Alpha-2任务分配 Alpha阶段项目目标 初步实现北航社团小程序: 北航社团小程序基础功能(优先级中的高两级,即 ...