以下内容都是针对Pytorch 1.0-1.1介绍。



很多文章都是从Dataset等对象自下往上进行介绍,但是对于初学者而言,其实这并不好理解,因为有的时候会不自觉地陷入到一些细枝末节中去,而不能把握重点,所以本文将会自上而下地对Pytorch数据读取方法进行介绍。

自上而下理解三者关系

首先我们看一下DataLoader.next的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据)。

class DataLoader(object):
... def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter) # Sampler
batch = self.collate_fn([self.dataset[i] for i in indices]) # Dataset
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch

在阅读上面代码前,我们可以假设我们的数据是一组图像,每一张图像对应一个index,那么如果我们要读取数据就只需要对应的index即可,即上面代码中的indices,而选取index的方式有多种,有按顺序的,也有乱序的,所以这个工作需要Sampler完成,现在你不需要具体的细节,后面会介绍,你只需要知道DataLoader和Sampler在这里产生关系。

那么Dataset和DataLoader在什么时候产生关系呢?没错就是下面一行。我们已经拿到了indices,那么下一步我们只需要根据index对数据进行读取即可了。

再下面的if语句的作用简单理解就是,如果pin_memory=True,那么Pytorch会采取一系列操作把数据拷贝到GPU,总之就是为了加速。

综上可以知道DataLoader,Sampler和Dataset三者关系如下:

在阅读后文的过程中,你始终需要将上面的关系记在心里,这样能帮助你更好地理解。

Sampler

参数传递

要更加细致地理解Sampler原理,我们需要先阅读一下DataLoader 的源代码,如下:

class DataLoader(object):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=default_collate,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None)

可以看到初始化参数里有两种sampler:samplerbatch_sampler,都默认为None。前者的作用是生成一系列的index,而batch_sampler则是将sampler生成的indices打包分组,得到一个又一个batch的index。例如下面示例中,BatchSamplerSequentialSampler生成的index按照指定的batch size分组。

>>>in : list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
>>>out: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]

Pytorch中已经实现的Sampler有如下几种:

  • SequentialSampler
  • RandomSampler
  • WeightedSampler
  • SubsetRandomSampler

需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解,这里只做总结:

  • 如果你自定义了batch_sampler,那么这些参数都必须使用默认值:batch_size, shuffle,sampler,drop_last.
  • 如果你自定义了sampler,那么shuffle需要设置为False
  • 如果samplerbatch_sampler都为None,那么batch_sampler使用Pytorch已经实现好的BatchSampler,而sampler分两种情况:
    • shuffle=True,则sampler=RandomSampler(dataset)
    • shuffle=False,则sampler=SequentialSampler(dataset)

如何自定义Sampler和BatchSampler?

仔细查看源代码其实可以发现,所有采样器其实都继承自同一个父类,即Sampler,其代码定义如下:

class Sampler(object):
r"""Base class for all Samplers.
Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
way to iterate over indices of dataset elements, and a :meth:`__len__` method
that returns the length of the returned iterators.
.. note:: The :meth:`__len__` method isn't strictly required by
:class:`~torch.utils.data.DataLoader`, but is expected in any
calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
""" def __init__(self, data_source):
pass def __iter__(self):
raise NotImplementedError def __len__(self):
return len(self.data_source)

所以你要做的就是定义好__iter__(self)函数,不过要注意的是该函数的返回值需要是可迭代的。例如SequentialSampler返回的是iter(range(len(self.data_source)))

另外BatchSampler与其他Sampler的主要区别是它需要将Sampler作为参数进行打包,进而每次迭代返回以batch size为大小的index列表。也就是说在后面的读取数据过程中使用的都是batch sampler。

Dataset

Dataset定义方式如下:

class Dataset(object):
def __init__(self):
... def __getitem__(self, index):
return ... def __len__(self):
return ...

上面三个方法是最基本的,其中__getitem__是最主要的方法,它规定了如何读取数据。但是它又不同于一般的方法,因为它是python built-in方法,其主要作用是能让该类可以像list一样通过索引值对数据进行访问。假如你定义好了一个dataset,那么你可以直接通过dataset[0]来访问第一个数据。在此之前我一直没弄清楚__getitem__是什么作用,所以一直不知道该怎么进入到这个函数进行调试。现在如果你想对__getitem__方法进行调试,你可以写一个for循环遍历dataset来进行调试了,而不用构建dataloader等一大堆东西了,建议学会使用ipdb这个库,非常实用!!!以后有时间再写一篇ipdb的使用教程。另外,其实我们通过最前面的Dataloader的__next__函数可以看到DataLoader对数据的读取其实就是用了for循环来遍历数据,不用往上翻了,我直接复制了一遍,如下:

class DataLoader(object):
... def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter)
batch = self.collate_fn([self.dataset[i] for i in indices]) # this line
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch

我们仔细看可以发现,前面还有一个self.collate_fn方法,这个是干嘛用的呢?在介绍前我们需要知道每个参数的意义:

  • indices: 表示每一个iteration,sampler返回的indices,即一个batch size大小的索引列表
  • self.dataset[i]: 前面已经介绍了,这里就是对第i个数据进行读取操作,一般来说self.dataset[i]=(img, label)

看到这不难猜出collate_fn的作用就是将一个batch的数据进行合并操作。默认的collate_fn是将img和label分别合并成imgs和labels,所以如果你的__getitem__方法只是返回 img, label,那么你可以使用默认的collate_fn方法,但是如果你每次读取的数据有img, box, label等等,那么你就需要自定义collate_fn来将对应的数据合并成一个batch数据,这样方便后续的训练步骤。

微信公众号:AutoML机器学习

MARSGGBO♥原创

如有意合作或学术讨论欢迎私戳联系~
邮箱:marsggbo@foxmail.com


2019-8-6

一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系的更多相关文章

  1. pytorch中DataLoader, DataSet, Sampler之间的关系

    转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为 ...

  2. 一文弄懂pytorch搭建网络流程+多分类评价指标

    讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700 ...

  3. 【编码】彻底弄懂ASCII、Unicode、UTF-8之间的关系

    计算机中的所有字符,说到底都是用二进制的0.1的排列组合来表示的,因此就需要有一个规范,来枚举规定每个字符对应哪个0.1的排列组合,这样的规范就是字符集. ASCII 全称是“美国信息交换标准码”(A ...

  4. 一文弄懂神经网络中的反向传播法——BackPropagation【转】

    本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation   最近在看深度学习 ...

  5. 一文弄懂-Netty核心功能及线程模型

    目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty ...

  6. 一文弄懂-《Scalable IO In Java》

    目录 一. <Scalable IO In Java> 是什么? 二. IO架构的演变历程 1. Classic Service Designs 经典服务模型 2. Event-drive ...

  7. 一文弄懂-BIO,NIO,AIO

    目录 一文弄懂-BIO,NIO,AIO 1. BIO: 同步阻塞IO模型 2. NIO: 同步非阻塞IO模型(多路复用) 3.Epoll函数详解 4.Redis线程模型 5. AIO: 异步非阻塞IO ...

  8. 一文弄懂CGAffineTransform和CTM

    一文弄懂CGAffineTransform和CTM 一些概念 坐标空间(系):视图(View)坐标空间与绘制(draw)坐标空间 CTM:全称current transformation matrix ...

  9. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

随机推荐

  1. Alpha冲刺(8/10)——2019.4.30

    作业描述 课程 软件工程1916|W(福州大学) 团队名称 修!咻咻! 作业要求 项目Alpha冲刺(团队) 团队目标 切实可行的计算机协会维修预约平台 开发工具 Eclipse 团队信息 队员学号 ...

  2. Faker伪数据生成

    版本信息:Faker==3.0.0factory-boy==2.12.0 provider: # encoding=utf-8 import randomfrom faker.providers im ...

  3. C语言结构体的“继承”

    这里说的继承有点像C++里的父类和子类,实际上是结构体类型的强制转换,最近看Linux内核源码时经常接触到这种方法,在这里就当作是一个简单的学习吧. 下面给出一个Demo,很简单,分别定义了一个fat ...

  4. CF1190E Tokitsukaze and Explosion 二分、贪心、倍增、ST表

    传送门 最小值最大考虑二分答案,不难发现当最小值\(mid\)确定之后,原点到所有直线的距离一定都是\(mid\)时才是最优的,也就是说这些直线一定都是\(x^2+y^2=mid^2\)的切线. 接下 ...

  5. K8S学习笔记之k8s使用ceph实现动态持久化存储

    0x00 概述 本文章介绍如何使用ceph为k8s提供动态申请pv的功能.ceph提供底层存储功能,cephfs方式支持k8s的pv的3种访问模式ReadWriteOnce,ReadOnlyMany ...

  6. spring注解@postConstruct与constructor与@Autowired的启动顺序

    本文链接:https://blog.csdn.net/zpflwy1314/article/details/80797756 @Postcontruct’在依赖注入完成后自动调用,例如要将对象a注入到 ...

  7. SQL Server的NTEXT类型不支持等号"="操作(转载)

    SQL SERVER – Fix: Error : 402 The data types ntext and varchar are incompatible in the equal to oper ...

  8. phpstorm 2016.3.2 的最新破解方法

    v2.0 最新的方式 第一:下载PHPStorm20173.2:(下载链接:windows) 第二:直接用浏览器打开 http://idea.lanyus.com/ ,点击页面中的“获得注册码”,然后 ...

  9. SQL小技巧(一)拼音首字母的模糊查询

    基于Microsoft SQL Server 的标量值函数fun_GetPy,借鉴其他优秀的博主文章,此处贴出源码,以及使用方法 1.打开新建查询,贴如下代码,F5 /****** Object: U ...

  10. 一张图看懂SharpCamera

    通过下面的图片,可以瞬间看懂整个类库的脉络.