题面

题解

直接求解比较麻烦,考虑将问题进行转化。

设序列\(a = \{3, 1, 4, 2, 5\}, b = \{3, 2, 4, 1, 5\}\),那么我们构造一个正方形方格,将\(a\)放在横行,\(b\)放在竖行,可以画出下图。

那么我们可以发现,方案数就是从左上走到右下的不同序列个数。

这样我们可以\(\texttt{d}\texttt{p}\),设\(f[i][j]\)表示走到\((i, j)\)的方案数,那么显然\(f[i][j] = f[i - 1][j] + f[i][j - 1]\)。

不过这样转移发现有重复。考虑到\(a_i = b_j\)是\(f[i][j]\)出现重复的必要条件,通过推导可以得出方程:\(f[i][j] = f[i][j - 1] + f[i - 1][j] + [a_i = b_j]\sum_{k \geq 1}[a_{i - k} = b_{j - k}]f[i - k][j - k]\mathrm{C}(t - 1)\),其中\(\mathrm{C}\)表示卡特兰数,\(t\)表示\(1\)到\(k\)之间有多少个\(l\)满足\(a_{i - l} = b_{i - l}\)。

由于\(a_i = b_j\)只有\(n\)对,所以时间复杂度为\(\mathrm{O}(n ^ 2)\)。

代码

#include <cstdio>
#include <algorithm>
#include <vector>
#define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout) inline int read()
{
int data = 0, w = 1; char ch = getchar();
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
} const int N(2010), Mod(1e9 + 7);
int n, m, fac[N], inv[N], A[N], B[N], f[N][N];
inline int C(int n) { return 1ll * fac[n << 1] * inv[n] % Mod * inv[n + 1] % Mod; }
int fastpow(int x, int y)
{
int ans = 1;
for (; y; y >>= 1, x = 1ll * x * x % Mod)
if (y & 1) ans = 1ll * ans * x % Mod;
return ans;
} int main()
{
n = read(), m = n << 1, fac[0] = inv[0] = 1, f[1][1] = 1;
for (int i = 1; i <= m; i++) fac[i] = 1ll * fac[i - 1] * i % Mod;
inv[m] = fastpow(fac[m], Mod - 2);
for (int i = m - 1; i; i--) inv[i] = 1ll * inv[i + 1] * (i + 1) % Mod;
for (int i = 1; i <= n; i++) A[i] = read();
for (int i = 1; i <= n; i++) B[i] = read();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
{
if (i > 1 || j > 1) f[i][j] = (f[i - 1][j] + f[i][j - 1]) % Mod;
if (A[i] == B[j]) for (int k = 1, cnt = 0; k < i && k < j; k++)
if (A[i - k] == B[j - k])
f[i][j] = (f[i][j] - 1ll * C(cnt) *
f[i - k][j - k] % Mod + Mod) % Mod, ++cnt;
}
printf("%d\n", f[n][n]);
return 0;
}

AT1879 2 つの山札的更多相关文章

  1. [ARC053D]2 つの山札

    题意:给定排列$a_{1\cdots n},b_{1\cdots n}$,执行以下操作$2n-2$次来生成一个长度为$2n-2$的序列:选择$a,b$之一(选择的序列长度要$\geq2$),删除它的第 ...

  2. HDU2063 过山车

    过山车 RPG girls今天和大家一起去游乐场玩,终于可以坐上梦寐以求的过山车了.可是,过山车的每一排只有两个座位,而且还有条不成文的规矩,就是每个女生必须找个个男生做partner和她同坐.但是, ...

  3. HDOJ 2063 过山车

    过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  4. Xamarin.Android之山有木兮之木有枝,心悦君兮君不知。

    Xamarin.Android之山有木兮之木有枝,心悦君兮君不知. 第一步,写项目中的第一个界面. <?xml version="1.0" encoding ="  ...

  5. hdu 2063 过山车(匈牙利算法模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory ...

  6. HDU- 2063 过山车

    http://acm.hdu.edu.cn/showproblem.php?pid=2063 过山车//我的第一个二分匹配 Time Limit: 1000/1000 MS (Java/Others) ...

  7. hdoj 2063 过山车【匈牙利算法+邻接矩阵or邻接表】

    过山车 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. centos 6+安装山逗斯骚尅特(本文内容来自都比更具帝)

    系统支持:CentOS 6+,Debian 7+,Ubuntu 12+ 内存要求:≥128M 关于本脚本 一键安装 Shadowsocks-Python, ShadowsocksR, Shadowso ...

  9. 大龄剩女四大结局:孤寡 后妈 拉拉 出家 宽带山KDS-宽带山社区-第一城市消费门户

    大龄剩女四大结局:孤寡 后妈 拉拉 出家 宽带山KDS-宽带山社区-第一城市消费门户 主题:大龄剩女四大结局:孤寡 后妈 拉拉 出家

随机推荐

  1. PS利用蒙版抠图

    扣图除了用锁套工具外,用蒙版时一个比较快的方法. 前期准备 首先准备一个PS CS6和一个神仙姐姐,一定要先Ctrl+J复制一份图层(不然待会神仙姐姐就找不到了). 使用色阶及反相获取轮廓 使用色阶使 ...

  2. 【开发笔记】- Java中关于HashMap的元素遍历的顺序问题

    今天在使用如下的方式遍历HashMap里面的元素时 for (Entry<String, String> entry : hashMap.entrySet()) { MessageForm ...

  3. 又一个秘密如何让浏览器访问最新的js,css等外部引用

    在引用文件末尾加上一个参数,让浏览器知道这个文件跟上一个文件是不同的,让浏览器去服务器重新加载最新的,例如:<script type="text/javascript" sr ...

  4. MySQL数据库之互联网常用分库分表方案

    一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就 ...

  5. Vue学习之项目部分代码(十八)

    1.mian.js: // 入口文件 import Vue from "vue"; // 1.1导入路由 import VueRouter from "vue-route ...

  6. C 语言快速入门,21 个小项目足矣!「不走弯路就是捷径」

    C 语言作为大学理工科专业的必修,是很多同学走进编程世界的第一课.那么怎样才能更好的入门 C 语言呢? 下面整理了 21 个 C 语言练手项目,从基础语法开始,逐步深入,通过一个个练手项目,让你轻松驰 ...

  7. Cloudera Certified Associate Administrator案例之Install篇

    Cloudera Certified Associate Administrator案例之Install篇 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.创建主机模板(为了给主 ...

  8. suctf2019 部分web题目的复盘

    1.简单的SQL注入 一开始一直没思路,输入什么过滤什么,结束后看了大佬们的wp,感觉学到了,这里涉及到Mysql中的一个特殊模式的设置 set sql_mode=pipes_as_concat; 这 ...

  9. mysql where 1

    where后跟各种查询条件,当条件为真时即可查询出记录.在这里where 1,1为真,也就是where后的条件为真,查询表中所有内容. SELECT * FROM `sdb_pam_members` ...

  10. KClass与函数引用详解

    继续学习Kotlin反射相关的东东. KClass: 在上一次是通过类来获取它的KClass对象: 那如果是一个对象呢?与这个对象对应的类的KClass对象又是如何获取的呢?像Java也是一样有相关机 ...