【CF285E】Positions in Permutations(动态规划,容斥)
【CF285E】Positions in Permutations(动态规划,容斥)
题面
题解
首先发现恰好很不好算,所以转成至少,这样子只需要确定完一部分数之后剩下随意补。
然后套一个二项式反演进行容斥就可以得到答案了。
考虑怎么算至少\(m\)个的贡献,
设\(f[i][j][S]\)表示当前填到了位置\(i\),一个有\(j\)个贡献,\(i\)和\(i+1\)的使用情况是\(S\)的方案数,每次枚举一下这个位置是填\(i+1\)还是\(i-1\)还是其他就可以进行转移了。
#include<iostream>
#include<cstdio>
using namespace std;
#define MOD 1000000007
#define MAX 1010
void add(int &x,int y){x+=y;if(x>=MOD)x-=MOD;}
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,jc[MAX],a[MAX],ans;
int f[MAX][MAX][4],C[MAX][MAX];
int main()
{
n=read();m=read();
jc[0]=1;for(int i=1;i<=n;++i)jc[i]=1ll*jc[i-1]*i%MOD;
for(int i=0;i<=n;++i)C[i][0]=1;
for(int i=1;i<=n;++i)
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
f[0][0][1]=1;
for(int i=1;i<=n;++i)
for(int j=0;j<i;++j)
for(int S=0;S<4;++S)
{
if(!f[i-1][j][S])continue;
add(f[i][j][S>>1],f[i-1][j][S]);
if(!(S&1))add(f[i][j+1][S>>1],f[i-1][j][S]);
if(i!=n)add(f[i][j+1][(S>>1)|2],f[i-1][j][S]);
}
for(int i=0;i<=n;++i)
for(int S=0;S<4;++S)
add(a[i],1ll*f[n][i][S]*jc[n-i]%MOD);
for(int i=m,d=1;i<=n;++i,d=MOD-d)add(ans,1ll*d*C[i][m]%MOD*a[i]%MOD);
printf("%d\n",ans);
return 0;
}
【CF285E】Positions in Permutations(动态规划,容斥)的更多相关文章
- CF285E Positions in Permutations(dp+容斥)
题意,给定n,k,求有多少排列是的 | p[i]-i |=1 的数量为k. Solution 直接dp会有很大的后效性. 所以我们考虑固定k个数字使得它们是合法的,所以我们设dp[i][j][0/1] ...
- 【做题】CF285E. Positions in Permutations——dp+容斥
题意:求所有长度为\(n\)的排列\(p\)中,有多少个满足:对于所有\(i \,(1 \leq i \leq n)\),其中恰好有\(k\)个满足\(|p_i - i| = 1\).答案对\(10^ ...
- 【CF715E】Complete the Permutations(容斥,第一类斯特林数)
[CF715E]Complete the Permutations(容斥,第一类斯特林数) 题面 CF 洛谷 给定两个排列\(p,q\),但是其中有些位置未知,用\(0\)表示. 现在让你补全两个排列 ...
- 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学
[BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...
- CF285E Positions in Permutations
思路 dp+二项式反演的神题 就是dp部分非常麻烦(好吧是我傻了 考虑先钦定m个满足条件的位置,这m个\(x_i\),只能放\(x_i-1\)或\(x_i+1\),然后其他的随便放(得出至少m个的方案 ...
- CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)
Permutation p is an ordered set of integers p1, p2, ..., pn, consisting of n distinct positive in ...
- CF285 E Positions in Permutations——“恰好->大于”的容斥和允许“随意放”的dp
题目:http://codeforces.com/contest/285/problem/E 是2018.7.31的一场考试的题,当时没做出来. 题解:http://www.cnblogs.com/y ...
- codeforces 340E Iahub and Permutations(错排or容斥)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Iahub and Permutations Iahub is so happy ...
- 【BZOJ5287】[HNOI2018]毒瘤(动态规划,容斥)
[BZOJ5287][HNOI2018]毒瘤(动态规划,容斥) 题面 BZOJ 洛谷 题解 考场上想到的暴力做法是容斥: 因为\(m-n\le 10\),所以最多会多出来\(11\)条非树边. 如果就 ...
随机推荐
- js实现复制功能兼容ios
html: <div id="copyBT">这是要复制的1内容</div> <a id="contentas">这是复制按 ...
- Windows中将nginx添加到服务(转)
下载安装nginx http://nginx.org/en/download.html 下载后解压到C盘 C:\nginx-1.14.0 添加服务 需要借助"Windows Service ...
- ORM:对象关系映射
一.简单操作 定义:面向对象和关系型数据库的一种映射,通过操作对象的方式操作数据 对应关系: 类对应数据表 对象对应数据行(记录) 属性对应字段 导入:from app01 import models ...
- 深入理解JVM虚拟机(一):JVM运行时数据区
概述: JVM将内存的管理进行封装,使得开发人员不必关心内存申请.释放操作.但是在高级程序开发.复杂业务场景开发的时候,如果出现内存溢出的情况,对于开发人员而言就很难去分析出原因.所以还是很有必要去了 ...
- 白话SCRUM 之二:product backlog
在SCRUM方法中明确要求了3个文档: 1 product backlog 2sprint backlog 3 burn-down chart Product backlog 中列举了本项目应该实现的 ...
- day 35
目录 单表操作 分组 group by having order by limit 使用顺序 多表操作 外键 一对多 多对多 一对一 多表联查 单表操作 分组 group by 分组指的是:将所有记录 ...
- Flask配置Cors跨域
1 跨域的理解 跨域是指:浏览器A从服务器B获取的静态资源,包括Html.Css.Js,然后在Js中通过Ajax访问C服务器的静态资源或请求.即:浏览器A从B服务器拿的资源,资源中想访问服务器C的资源 ...
- 1-9 Python判断结构
判断结构¶ In [3]: tang=100 if tang>200: print('OK') print('test')##有缩进就不在就不在if条件结构中 test In [6]: ...
- web权限验证方法说明[转载]
前言 本文将会从最基本的一种web权限验证说起,即HTTP Basic authentication,然后是基于cookies和tokens的权限验证,最后则是signatures和一次性密码. HT ...
- uiautomator输入中文实例
package com.demo3; import jp.jun_nama.test.utf7ime.helper.Utf7ImeHelper; import com.android.uiautoma ...