题目描述

假设你有一条长度为5的木版,初始时没有涂过任何颜色。你希望把它的5个单位长度分别涂上红、绿、蓝、绿、红色,用一个长度为5的字符串表示这个目标:RGBGR。

每次你可以把一段连续的木版涂成一个给定的颜色,后涂的颜色覆盖先涂的颜色。例如第一次把木版涂成RRRRR,第二次涂成RGGGR,第三次涂成RGBGR,达到目标。

用尽量少的涂色次数达到目标。

输入输出格式

输入格式:

输入仅一行,包含一个长度为n的字符串,即涂色目标。字符串中的每个字符都是一个大写字母,不同的字母代表不同颜色,相同的字母代表相同颜色。

输出格式:

仅一行,包含一个数,即最少的涂色次数。


非常明显的一道区间DP

关于区间DP转https://www.cnblogs.com/lizitong/p/10014809.html

我们要将一个区间涂成给出的颜色。

这道题的难点在于其与我们的思维相逆。

我们主观上的涂色全部都是先涂底层,然后在逐渐在上面覆盖,而这道题的状态转移方程却不同。

首先状态,dp[i][j]表示[i]到[j]的最少次数。

注意清初值,由于是求最小,初值清成正无穷,每个单独的颜色都需要涂,所以清成1。

当我们枚举长度的时候,如果[i][j]颜色相同,岂不是我在涂[i][j-1]或者[i+1][j]顺带一笔就可以带过去?

这就是我所说的与我们印象相逆的地方。假设我们现实中一笔带过去,中间的颜色全部会变色,但是我们这里是一个逆向的过程,中间的颜色是建立在已经涂过的颜色基础上的。

仔细想想。

那如果[i][j]颜色不一样呢?

那我们就需要把这段区间分成两段涂,枚举k在区间[i][j]中,把区间分成两段,然后将次数相加。

上代码。欢迎大家在评论区留言讨论。

#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
using namespace std;
char c[];
int dp[][];
int main()
{
scanf("%s",c+);
int l = strlen(c+);
memset(dp,0x3f,sizeof(dp));
for(int i = ;i<=l;i++)
{
dp[i][i] = ;
}
for(int len = ;len<=l;len++)
{
for(int i = ;i+len-<=l;i++)
{
int j = i+len-;
if(c[i]==c[j])
{
dp[i][j] = min(dp[i+][j],dp[i][j-]);
}else
{
for(int k = i;k<j;k++)
{
dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+][j]);
}
}
}
}
printf("%d",dp[][l]);
return ; }

[CQOI2007]涂色paint(BZOJ 1260)题解的更多相关文章

  1. [BZOJ 1260][CQOI2007]涂色paint 题解(区间DP)

    [BZOJ 1260][CQOI2007]涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为 ...

  2. 【DP】BZOJ 1260: [CQOI2007]涂色paint

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 893  Solved: 540[Submit][Stat ...

  3. BZOJ 1260: [CQOI2007]涂色paint( 区间dp )

    区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...

  4. bzoj千题计划185:bzoj1260: [CQOI2007]涂色paint

    http://www.lydsy.com/JudgeOnline/problem.php?id=1260 区间DP模型 dp[l][r] 表示涂完区间[l,r]所需的最少次数 从小到大们枚举区间[l, ...

  5. [BZOJ1260][CQOI2007]涂色paint 区间dp

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MB Submit: 1575  Solved: 955 [Submit][S ...

  6. BZOJ_1260_[CQOI2007]涂色paint _区间DP

    BZOJ_1260_[CQOI2007]涂色paint _区间DP 题意: 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...

  7. BZOJ1260 CQOI2007 涂色paint 【区间DP】

    BZOJ1260 CQOI2007 涂色paint Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...

  8. BZOJ 1260 [CQOI2007]涂色paint(区间DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1260 [题目大意] 假设你有一条长度为n的木版,初始时没有涂过任何颜色 每次你可以把一 ...

  9. BZOJ 1260: [CQOI2007]涂色paint【区间DP】

    Description 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续 ...

随机推荐

  1. C:\Program不是内部或外部命令,也不是可运行的程序或批处理文件。

    问题描述:C:\Program不是内部或外部命令,也不是可运行的程序或批处理文件. 解决办法:C:\"Program Files"\具体文件目录. 具体场景:在cmd或者批处理文件 ...

  2. docker学习之路-centos下安装docker

    前言 我要在云服务器上做一个asp.net core的webapi应用,使用docker来部署应用,中间用到的任何组件包括nginx和sqlserver 2017都是用docker来装载运行,所以,这 ...

  3. 分布式系统根基:物理时钟和Lamport逻辑时钟

    分布式系统解决了传统单体架构的单点问题和性能容量问题,另一方面也带来了很多的问题,其中一个问题就是多节点的时间同步问题:不同机器上的物理时钟难以同步,导致无法区分在分布式系统中多个节点的事件时序.19 ...

  4. 重温拉格朗日乘子法和KKT条件

    在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式 ...

  5. 事件绑定+call apply指向

    JS高级 事件—— 浏览器客户端上客户触发的行为都称为事件 所有事件都是天生自带的,不需要我们去绑定,只需要我们去触发,通过obj.事件名=function(){ } 事件名:onmousemove: ...

  6. React学习笔记②

    import React,{Component} from 'react'; import Child from './Child.js' class App extends Component{ c ...

  7. java OutputStream的使用

    package cn.kongxh.io3; import java.io.File ;import java.io.OutputStream ;import java.io.FileOutputSt ...

  8. 【Python】列表推导式

    1. 列表推导式 list1 = [1, 3, 5, 6, 8] list2 = [x * 2 for x in list1] print(list2) # [2, 6, 10, 12, 16]

  9. document.forms使用

    定义:document.forms返回form表单的集合,包含了当前DOM结构中所有的form表单. 语法: . 获取当前DOM结构中的第一个form表单. document.forms[] . 获取 ...

  10. mysql查看表的属性 mysql将查询结果给临时变量

    查看所有的表show table status ; 查看具体的某张表show table status from xxdb like 'tm_properties' ; 查看具体的字段的意思 sele ...