【LG5330】[SNOI2019]数论

题面

洛谷

题目大意:

给定集合\(\mathbb {A,B}\)

问有多少个小于\(T\)的非负整数\(x\)满足:\(x\)除以\(P\)的余数属于\(\mathbb A\)且\(x\)除以\(Q\)的余数属于\(\mathbb B\)。

其中\(1\leq |\mathbb A|,|\mathbb B|\leq 10^6,1\leq P,Q\leq 10^6,1\leq T\leq 10^{18}\)。

题面

考虑枚举一个\(A\),然后考虑有多少个合法的\(B\)。

首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环。

所以我们预处理每个环内有多少个合法的\(b\),再把\(b\)按照访问顺序记录一下,那么对于每一个\(a\)就可以直接算答案了。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e6 + 5;
int P, Q, N, M, a[MAX_N], b[MAX_N];
long long T, len, p[MAX_N];
int val[MAX_N], w[MAX_N], col[MAX_N], pos[MAX_N], cnt;
vector<int> cir[MAX_N], sum[MAX_N];
int dfs(int x) {
if (col[x]) return 0;
col[x] = cnt, cir[cnt].push_back(x);
return val[x] + dfs((x + P) % Q);
}
int solve(int l, int x) { return sum[col[x]][pos[x] + l] - sum[col[x]][pos[x]]; }
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
P = gi(), Q = gi(), N = gi(), M = gi(); scanf("%lld", &T);
for (int i = 1; i <= N; i++) a[i] = gi();
for (int i = 1; i <= M; i++) b[i] = gi();
if (P > Q) swap(P, Q), swap(N, M), swap(a, b);
len = Q / __gcd(P, Q);
for (int i = 1; i <= M; i++) val[b[i]] = 1;
for (int i = 1; i <= N; i++) p[i] = (T - 1 - a[i]) / P;
for (int i = 0; i < Q; i++) if (!col[i]) ++cnt, w[cnt] = dfs(i);
for (int i = 1; i <= cnt; i++) {
for (int j = 0; j < (int)cir[i].size(); j++) pos[cir[i][j]] = j;
for (int j = 0, sz = cir[i].size(); j < sz - 1; j++) cir[i].push_back(cir[i][j]);
sum[i].push_back(val[cir[i][0]]);
for (int j = 1; j < (int)cir[i].size(); j++) sum[i].push_back(sum[i][j - 1] + val[cir[i][j]]);
}
long long ans = 0;
for (int i = 1; i <= N; i++) {
ans += p[i] / len * w[col[a[i]]];
ans += solve(p[i] % len, a[i]) + val[a[i]];
}
printf("%lld\n", ans);
return 0;
}

【LG5330】[SNOI2019]数论的更多相关文章

  1. 【LOJ#3096】[SNOI2019]数论

    [LOJ#3096][SNOI2019]数论 题面 LOJ 题解 考虑枚举一个\(A\),然后考虑有多少个合法的\(B\). 首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环. ...

  2. 洛谷$P5330\ [SNOI2019]$数论 数论

    正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表 ...

  3. [SNOI2019]数论

    题目 考虑对于每一个\(a_i\)计算有多少个\(0<x\leq T-1\)满足\(x\equiv a_i(mod\ P)\)且\(x\ mod\ Q \in B\) 显然\(x=a_i+k\t ...

  4. Luogu P5330 [SNOI2019]数论

    题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lflo ...

  5. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  6. 【LOJ】#3096. 「SNOI2019」数论

    LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\) ...

  7. [日常] SNOI2019场外VP记

    SNOI2019场外VP记 教练突然说要考一场别省省选来测试水平...正好还没看题那就当VP咯w... Day 1 八点开题打 .vimrc. 先看了看题目名...一股莫名鬼畜感袭来... 怎么T1就 ...

  8. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  9. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

随机推荐

  1. 洛谷 P2656 (缩点 + DAG图上DP)

    ### 洛谷 P2656 题目链接 ### 题目大意: 小胖和ZYR要去ESQMS森林采蘑菇. ESQMS森林间有N个小树丛,M条小径,每条小径都是单向的,连接两个小树丛,上面都有一定数量的蘑菇.小胖 ...

  2. thymeleaf入门

    controller层添加实体 html <!DOCTYPE html> <html xmlns:th="http://www.thymeleaf.org"> ...

  3. 博客中新浪图床 迁移至 阿里云的OSS

    前言 因为之前有个新浪的图床,还挺好用,而且免费,自己博客的图片上传到其上面也挺方便的,但是,前几周吧,突然图片就不能访问了,之前本来是想通过添加 meta 头来解决的,但是发现没有效果.于是就自己搞 ...

  4. io机制沉思录:分层与管理

    io模型的核心是内核kernel与应用(线程)的关系: 内核与应用的联系:数据状态信号和数据本身: 一.分层模型: 应用层——内核层——设备层 https://www.cnblogs.com/feng ...

  5. 下载安装office2019

    Hello,大家好,我是小喵. 支付宝搜索“321994”,领红包喽! 前几天答应给大家写一篇关于安装激活Office2019的文章.一直在准备,准备制作GIF动图,制作图片等,把我电脑上的Offic ...

  6. elasticSearch查询(一)

    **整理成sql格式来看懂elastic** 1.多个字段多个and查询 sql格式:select * from product where title = 'xxxx' and pid = 12 l ...

  7. C#循环结构

    一.背景: 因编程的基础差,因此最近开始巩固学习C#基础,后期把自己学习的东西,总结相应文章中,有不足处请大家多多指教. 二.简介 有的时候,可能需要多次执行同一块代码.一般情况下,语句是顺序执行的: ...

  8. c# 移除类中所有事件的绑定

    单例中为防止多处注册事件引起异步触发时发生报错,网上找了一圈没找到想要的方法. [异常类型]:ArgumentException[异常信息]:该委托必须有一个目标(且仅有一个目标). 结合网上资料整合 ...

  9. Python struct与小端存储

    参考链接:https://www.liaoxuefeng.com/wiki/1016959663602400/1017685387246080 在使用Python 实现字符向字节数据类型转换的时候,P ...

  10. MES助力日立电梯提升精细化管理水平

    项目背景介绍 日立电梯在2008年到2012年期间分别在五地工厂(上海.广州.天津.成都.扶梯)上线了ERP系统,在后续的使用时间里,逐渐发现现有ERP系统对于生产现场管理,产品质量追溯,产能控制等方 ...