【LG5330】[SNOI2019]数论

题面

洛谷

题目大意:

给定集合\(\mathbb {A,B}\)

问有多少个小于\(T\)的非负整数\(x\)满足:\(x\)除以\(P\)的余数属于\(\mathbb A\)且\(x\)除以\(Q\)的余数属于\(\mathbb B\)。

其中\(1\leq |\mathbb A|,|\mathbb B|\leq 10^6,1\leq P,Q\leq 10^6,1\leq T\leq 10^{18}\)。

题面

考虑枚举一个\(A\),然后考虑有多少个合法的\(B\)。

首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环。

所以我们预处理每个环内有多少个合法的\(b\),再把\(b\)按照访问顺序记录一下,那么对于每一个\(a\)就可以直接算答案了。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
using namespace std;
inline int gi() {
register int data = 0, w = 1;
register char ch = 0;
while (!isdigit(ch) && ch != '-') ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar();
return w * data;
}
const int MAX_N = 1e6 + 5;
int P, Q, N, M, a[MAX_N], b[MAX_N];
long long T, len, p[MAX_N];
int val[MAX_N], w[MAX_N], col[MAX_N], pos[MAX_N], cnt;
vector<int> cir[MAX_N], sum[MAX_N];
int dfs(int x) {
if (col[x]) return 0;
col[x] = cnt, cir[cnt].push_back(x);
return val[x] + dfs((x + P) % Q);
}
int solve(int l, int x) { return sum[col[x]][pos[x] + l] - sum[col[x]][pos[x]]; }
int main () {
#ifndef ONLINE_JUDGE
freopen("cpp.in", "r", stdin);
#endif
P = gi(), Q = gi(), N = gi(), M = gi(); scanf("%lld", &T);
for (int i = 1; i <= N; i++) a[i] = gi();
for (int i = 1; i <= M; i++) b[i] = gi();
if (P > Q) swap(P, Q), swap(N, M), swap(a, b);
len = Q / __gcd(P, Q);
for (int i = 1; i <= M; i++) val[b[i]] = 1;
for (int i = 1; i <= N; i++) p[i] = (T - 1 - a[i]) / P;
for (int i = 0; i < Q; i++) if (!col[i]) ++cnt, w[cnt] = dfs(i);
for (int i = 1; i <= cnt; i++) {
for (int j = 0; j < (int)cir[i].size(); j++) pos[cir[i][j]] = j;
for (int j = 0, sz = cir[i].size(); j < sz - 1; j++) cir[i].push_back(cir[i][j]);
sum[i].push_back(val[cir[i][0]]);
for (int j = 1; j < (int)cir[i].size(); j++) sum[i].push_back(sum[i][j - 1] + val[cir[i][j]]);
}
long long ans = 0;
for (int i = 1; i <= N; i++) {
ans += p[i] / len * w[col[a[i]]];
ans += solve(p[i] % len, a[i]) + val[a[i]];
}
printf("%lld\n", ans);
return 0;
}

【LG5330】[SNOI2019]数论的更多相关文章

  1. 【LOJ#3096】[SNOI2019]数论

    [LOJ#3096][SNOI2019]数论 题面 LOJ 题解 考虑枚举一个\(A\),然后考虑有多少个合法的\(B\). 首先这个数可以写成\(a_i+kP\)的形式,那么它模\(Q\)的值成环. ...

  2. 洛谷$P5330\ [SNOI2019]$数论 数论

    正解:数论 解题报告: 传送门$QwQ$ ,,,这题还蛮妙的$QwQ$(,,,其实所有数论题对我来说都挺妙的$kk$然后我真的好呆昂我理解了好久$QAQ$ 考虑先建$Q$个点,编号为$[0,Q)$,表 ...

  3. [SNOI2019]数论

    题目 考虑对于每一个\(a_i\)计算有多少个\(0<x\leq T-1\)满足\(x\equiv a_i(mod\ P)\)且\(x\ mod\ Q \in B\) 显然\(x=a_i+k\t ...

  4. Luogu P5330 [SNOI2019]数论

    题目 如果\(P>Q\)的话我们先交换一下\(P,Q\). 我们先枚举所有满足第一个条件的数,对于\(x\equiv a_i(mod\ P)\),设\(x=a_i+kP(k\in[0,\lflo ...

  5. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  6. 【LOJ】#3096. 「SNOI2019」数论

    LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\) ...

  7. [日常] SNOI2019场外VP记

    SNOI2019场外VP记 教练突然说要考一场别省省选来测试水平...正好还没看题那就当VP咯w... Day 1 八点开题打 .vimrc. 先看了看题目名...一股莫名鬼畜感袭来... 怎么T1就 ...

  8. Codeforces Round #382 Div. 2【数论】

    C. Tennis Championship(递推,斐波那契) 题意:n个人比赛,淘汰制,要求进行比赛双方的胜场数之差小于等于1.问冠军最多能打多少场比赛.题解:因为n太大,感觉是个构造.写写小数据, ...

  9. NOIP2014 uoj20解方程 数论(同余)

    又是数论题 Q&A Q:你TM做数论上瘾了吗 A:没办法我数论太差了,得多练(shui)啊 题意 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, ...

随机推荐

  1. JAVA学习知识杂烩

    idea快捷键使用:https://blog.csdn.net/youanyyou/article/details/97072410 int值类型与引用类型比较的坑:https://www.cnblo ...

  2. 集成Azure DevOps Server(TFS) 与微软Teams

    1.概述 Microsoft Teams是Office 365中团队协作的中心.将团队的所有聊天.会议.文件和应用程序放在一个位置.软件开发团队可以在一个专门的协作中心中即时访问他们所需的所有内容,T ...

  3. POJ 3041 Asteroids(二分图最大匹配)

    ###题目链接### 题目大意: 给你 N 和 K ,在一个 N * N 个图上有 K 个 小行星.有一个可以横着切或竖着切的武器,问最少切多少次,所有行星都会被毁灭. 分析: 将 1~n 行数加入左 ...

  4. 大咖云集!Kubernetes and Cloud Native Meetup 深圳站开始报名!

    由阿里技术生态联合 CNCF 官方共同出品的 Kubernetes & Cloud Native Meetup 将在 8 月 31 日来到深圳.届时,阿里云.蚂蚁金服高级技术专家将携手来自国内 ...

  5. A Pattern Language for Parallel Application Programming

    A Pattern Language for Parallel Application Programming Berna L. Massingill, Timothy G. Mattson, Bev ...

  6. 打开centos7图形化窗口

    1. yum groupinstall "X Window System" 2. export DISPLAY=172.16.4.240:0.0 3. yum -y install ...

  7. Effective Python 编写高质量Python代码的59个有效方法

    Effective Python 编写高质量Python代码的59个有效方法

  8. windows 下安装MongoDB

    一:下载mongodb安装包 下载地址:https://www.mongodb.com/download-center/community 这里推荐下载msi的安装包 二:安装mongodb 双击下载 ...

  9. 让windows 10 家庭版 支持 Hyper-v 的方法

    pushd "%~dp0" dir /b %SystemRoot%\servicing\Packages\*Hyper-V*.mum >hyper-v.txt for /f ...

  10. 运算符 &(与运算)、|(或运算)、^(异或运算)

    按位与运算符(&) 参加运算的两个数据,按二进制位进行“与”运算. 运算规则:0&0=0;  0&1=0;   1&0=0;    1&1=1; 按位或运算符( ...