题目描述 Description

有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。 
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。 
我们知道小球落在第i个格子中的概率pi=pi=,其中i为格子的编号,从左至右依次为0,1,...,n。 
现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。 

输入描述 Input Description

第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。以下n行依次为木板上从上至下n行钉子的信息,每行中'*'表示钉子还在,'.'表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。

输出描述 Output Description

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。

样例输入 Sample Input

5 2
*
* .
* * *
* . * *
* * * * *

样例输出 Sample Output

7/16

数据范围及提示 Data Size & Hint

 

之前的一些废话:还有两天出国

题解:概率DP,f(i,j)表示到了第i行第j列的概率,首先f(1,1)=1,然后对于每一个钉子,各有50%的几率掉到左右两个块,转移为f(i+1,j+1)+=f(i,j)/2,f(i+1,j)+=f(i,j)/2,对于把钉子拆了的情况,可以理解成小球直接往下掉了两行,不进行往两边的转移。

比较坑爹的是,这题要输出既约分数,我刚开始写了一个分数的结构体,但是发现RE不断,后来用DP数组只存了分子,然后就A了。还有一个比较坑的是BZOJ不让输出回车,要不然presentation_error.

代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
typedef long long LL;
#define mem(a,b) memset(a,b,sizeof(a))
typedef pair<int,int> PII;
inline int read()
{
int x=,f=;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
return x*f;
}
LL gcd(LL a,LL b){return b==0ll ? a : gcd(b,a%b);}
int n,m,len[];
LL dp[][];
char s[];
bool pic[][];
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)for(int j=;j<=i;j++)
{
scanf("%s",s);
if(s[]=='*')pic[i][j]=;
}
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!pic[i][j] && i!=n){dp[i+][j+]=4ll*dp[i][j];continue;}
dp[i+][j]=dp[i+][j]+dp[i][j];
dp[i+][j+]=dp[i+][j+]+dp[i][j];
}
LL a=dp[n+][m+],b=1ll<<n,t=gcd(a,b);
if(a==)printf("0/1");
else printf("%lld/%lld",a/t,b/t);
return ;
}

总结:不要轻易的打分数结构体。

[POJ1189][BZOJ1867][CODEVS1709]钉子和小球的更多相关文章

  1. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  2. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  3. 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)

    传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...

  4. bzoj1867: [Noi1999]钉子和小球(DP)

    一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...

  5. POJ-1189 钉子和小球(动态规划)

    钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...

  6. codevs 1709 钉子和小球

    1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...

  7. POJ1189钉子和小球(DP)

    对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...

  8. bzoj1867钉子和小球

    题目链接 简单$DP$ $$dp[1][1]=1(\text{显然})$$ $$map[i][j]=='*'?dp[i+1][j]+=dp[i][j]/2,dp[i+1][j+1]+=dp[i][j] ...

  9. 钉子和小球_DP

    Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端 ...

随机推荐

  1. java4wifidog_server_README

    项目地址:https://github.com/C-hill/java4wifidog_server 开发环境:Windows  JDK7  Tomcat6  Myeclipse8.5  MySQL5 ...

  2. git push时出现 Username for 'https://github.com': 仅仅限于github

    使用git push origin master是出现如下问题:Username for 'https://github.com': 解决办法: git remote set-url origin g ...

  3. jvm 性能调优工具之 jmap

    概述 命令jmap是一个多功能的命令.它可以生成 java 程序的 dump 文件, 也可以查看堆内对象示例的统计信息.查看 ClassLoader 的信息以及 finalizer 队列. jmap ...

  4. 《一起学mysql》5

    基准函数   用于评估不同机器之间的性能差别   MariaDB [jason]> select benchmark(10000000,md5('test')); +-------------- ...

  5. python之np.tile()

    Numpy的tile()函数,就是将原矩阵横向.纵向地复制.tile是瓷砖的意思, 顾名思义,这个函数就是把数组像瓷砖一样铺展开来. 例1: 解释:b是一个数, 在同一个列表中把a横向铺展了21遍. ...

  6. jdbc:mysql:/// jdbc连接数据url简写方式

    正常情况下我们写jdbc连接本地mysql数据库的时候通常是这样写 jdbc:mysql:localhost:3306/数据库名 下面就是要提到的简单的方法 jdbc:mysql:///数据库名

  7. JQuery 遍历table中的checkbox 并对行数据进行校验

    JQuery中confirm的使用 $(document).ready(function () { $("#Btn_Print").click(function () { var ...

  8. 入职一个月后 对.net的感想

    我本来应该找Java工程师的岗位的,因种种原因进入了.net开发工程师.然后,我进入了一扇新世界的大门. 1.语法不同,思想相同. 刚入职那几天,每天都好蒙,.net代码语法啥的都和Java不一样,a ...

  9. 二叉搜索树(BST)基本操作

    什么是二叉搜索树? 二叉搜索树也叫做二叉排序树.二叉查找树,它有以下性质: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它 ...

  10. HeadFirst设计模式---装饰者

    定义装饰者模式 装饰者模式动态地将责任附加到对象上,若要扩展功能,装饰者提供了比继承更有弹性的替代方案.这句话摘自书中,给人读得很生硬难懂.通俗地来说,装饰者和被装饰者有相同的父类,装饰者的行为组装着 ...