题目描述 Description

有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。 
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。 
我们知道小球落在第i个格子中的概率pi=pi=,其中i为格子的编号,从左至右依次为0,1,...,n。 
现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。 

输入描述 Input Description

第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。以下n行依次为木板上从上至下n行钉子的信息,每行中'*'表示钉子还在,'.'表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。

输出描述 Output Description

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。

样例输入 Sample Input

5 2
*
* .
* * *
* . * *
* * * * *

样例输出 Sample Output

7/16

数据范围及提示 Data Size & Hint

 

之前的一些废话:还有两天出国

题解:概率DP,f(i,j)表示到了第i行第j列的概率,首先f(1,1)=1,然后对于每一个钉子,各有50%的几率掉到左右两个块,转移为f(i+1,j+1)+=f(i,j)/2,f(i+1,j)+=f(i,j)/2,对于把钉子拆了的情况,可以理解成小球直接往下掉了两行,不进行往两边的转移。

比较坑爹的是,这题要输出既约分数,我刚开始写了一个分数的结构体,但是发现RE不断,后来用DP数组只存了分子,然后就A了。还有一个比较坑的是BZOJ不让输出回车,要不然presentation_error.

代码:

#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
typedef long long LL;
#define mem(a,b) memset(a,b,sizeof(a))
typedef pair<int,int> PII;
inline int read()
{
int x=,f=;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
return x*f;
}
LL gcd(LL a,LL b){return b==0ll ? a : gcd(b,a%b);}
int n,m,len[];
LL dp[][];
char s[];
bool pic[][];
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)for(int j=;j<=i;j++)
{
scanf("%s",s);
if(s[]=='*')pic[i][j]=;
}
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!pic[i][j] && i!=n){dp[i+][j+]=4ll*dp[i][j];continue;}
dp[i+][j]=dp[i+][j]+dp[i][j];
dp[i+][j+]=dp[i+][j+]+dp[i][j];
}
LL a=dp[n+][m+],b=1ll<<n,t=gcd(a,b);
if(a==)printf("0/1");
else printf("%lld/%lld",a/t,b/t);
return ;
}

总结:不要轻易的打分数结构体。

[POJ1189][BZOJ1867][CODEVS1709]钉子和小球的更多相关文章

  1. bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球

    http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   ...

  2. [bzoj1867][Noi1999][钉子和小球] (动态规划)

    Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...

  3. 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)

    传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...

  4. bzoj1867: [Noi1999]钉子和小球(DP)

    一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...

  5. POJ-1189 钉子和小球(动态规划)

    钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...

  6. codevs 1709 钉子和小球

    1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...

  7. POJ1189钉子和小球(DP)

    对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...

  8. bzoj1867钉子和小球

    题目链接 简单$DP$ $$dp[1][1]=1(\text{显然})$$ $$map[i][j]=='*'?dp[i+1][j]+=dp[i][j]/2,dp[i+1][j+1]+=dp[i][j] ...

  9. 钉子和小球_DP

    Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端 ...

随机推荐

  1. 首次使用gradle出现Could not find method leftShift() for arguments解决办法

    1.在win10桌面编写test.gradle脚本,里面内容如下 task helloword << { println 'Hello gradle qick start' } 2.在do ...

  2. js/java 获取、添加、修改、删除cookie(最全)

      一.cookie介绍 1.cookie的本来面目 HTTP协议本身是无状态的.什么是无状态呢,即服务器无法判断用户身份.Cookie实际上是一小段的文本信息(key-value格式).客户端向服务 ...

  3. svn merge操作

    使用SVN做Merge操作时,会包含6个选项,下面就这6个选项给出详细的说明: 1.Merge a range of revisions 此类型应用最为广泛,主要是把源分支中的修改合并到目标分支上来. ...

  4. Python连载33-共享变量加锁、释放

    一.共享变量 共享变量:当多个线程访问同一个变量的时候.会产生共享变量的问题. 例子: import threading sum = 0 loopSum = 1000000 def myAdd(): ...

  5. python统计wav文件的时长

    import wave import os.path # 音频存放文件夹绝对路径 filedir = '/Users/111/PycharmProjects/TextClassify/wav' lis ...

  6. 送书『构建Apache Kafka流数据应用』和『小灰的算法之旅』和『Java并发编程的艺术』

    读书好处 1.可以使我们增长见识. 2.可提高我们的阅读能力和写作水平. 3.可以使我们变的有修养. 4.可以使我们找到好工作. 5.可以使我们在竞争激烈的社会立于不败之地. 6.最大的好处是可以让你 ...

  7. DGCNN

    架构总览 模型的整体架构源于 WebQA 的参考论文 Dataset and Neural Recurrent Sequence Labeling Model for Open-Domain Fact ...

  8. .NET Core 学习笔记之 WebSocketsSample

    1. 服务端 代码如下: Program: using Microsoft.AspNetCore; using Microsoft.AspNetCore.Hosting; namespace WebS ...

  9. Kafka学习笔记之Kafka性能测试方法及Benchmark报告

    0x00 概述 本文主要介绍了如何利用Kafka自带的性能测试脚本及Kafka Manager测试Kafka的性能,以及如何使用Kafka Manager监控Kafka的工作状态,最后给出了Kafka ...

  10. 基于WEB的网上购物系统-ssh源码

    基于WEB的网上购物系统主要功能包括:前台用户登录退出.注册.在线购物.修改个人信息.后台商品管理等等.本系统结构如下:(1)商品浏览模块:        实现浏览最新商品        实现按商品名 ...