[POJ1189][BZOJ1867][CODEVS1709]钉子和小球
|
题目描述 Description |
| 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。 让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。 我们知道小球落在第i个格子中的概率pi=pi= ,其中i为格子的编号,从左至右依次为0,1,...,n。 现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。 ![]() |
|
输入描述 Input Description |
| 第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。以下n行依次为木板上从上至下n行钉子的信息,每行中'*'表示钉子还在,'.'表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。 |
|
输出描述 Output Description |
|
仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。 |
|
样例输入 Sample Input |
5 2 |
|
样例输出 Sample Output |
7/16 |
|
数据范围及提示 Data Size & Hint |
之前的一些废话:还有两天出国
题解:概率DP,f(i,j)表示到了第i行第j列的概率,首先f(1,1)=1,然后对于每一个钉子,各有50%的几率掉到左右两个块,转移为f(i+1,j+1)+=f(i,j)/2,f(i+1,j)+=f(i,j)/2,对于把钉子拆了的情况,可以理解成小球直接往下掉了两行,不进行往两边的转移。
比较坑爹的是,这题要输出既约分数,我刚开始写了一个分数的结构体,但是发现RE不断,后来用DP数组只存了分子,然后就A了。还有一个比较坑的是BZOJ不让输出回车,要不然presentation_error.
代码:
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
typedef long long LL;
#define mem(a,b) memset(a,b,sizeof(a))
typedef pair<int,int> PII;
inline int read()
{
int x=,f=;char c=getchar();
while(!isdigit(c)){if(c=='-')f=-;c=getchar();}
while(isdigit(c)){x=x*+c-'';c=getchar();}
return x*f;
}
LL gcd(LL a,LL b){return b==0ll ? a : gcd(b,a%b);}
int n,m,len[];
LL dp[][];
char s[];
bool pic[][];
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)for(int j=;j<=i;j++)
{
scanf("%s",s);
if(s[]=='*')pic[i][j]=;
}
dp[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=i;j++)
{
if(!pic[i][j] && i!=n){dp[i+][j+]=4ll*dp[i][j];continue;}
dp[i+][j]=dp[i+][j]+dp[i][j];
dp[i+][j+]=dp[i+][j+]+dp[i][j];
}
LL a=dp[n+][m+],b=1ll<<n,t=gcd(a,b);
if(a==)printf("0/1");
else printf("%lld/%lld",a/t,b/t);
return ;
}
总结:不要轻易的打分数结构体。
[POJ1189][BZOJ1867][CODEVS1709]钉子和小球的更多相关文章
- bzoj千题计划189:bzoj1867: [Noi1999]钉子和小球
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j] ...
- [bzoj1867][Noi1999][钉子和小球] (动态规划)
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉 ...
- 2018.09.24 bzoj1867: [Noi1999]钉子和小球(概率dp)
传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/ ...
- bzoj1867: [Noi1999]钉子和小球(DP)
一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...
- POJ-1189 钉子和小球(动态规划)
钉子和小球 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7452 Accepted: 2262 Description 有一个 ...
- codevs 1709 钉子和小球
1709 钉子和小球 1999年NOI全国竞赛 时间限制: 2 s 空间限制: 128000 KB 题目等级 : 大师 Master 题解 查看运行结果题目描述 Description有一个三角形木板 ...
- POJ1189钉子和小球(DP)
对钉子DP,如果钉子存在DP[i+1][j]+=DP[i][j]; DP[i+1][j+1]+=DP[i][j]; 如果不存在DP[i+2][j+1]+=4*DP[i][j]; 见代码:(有一个比较坑 ...
- bzoj1867钉子和小球
题目链接 简单$DP$ $$dp[1][1]=1(\text{显然})$$ $$map[i][j]=='*'?dp[i+1][j]+=dp[i][j]/2,dp[i+1][j+1]+=dp[i][j] ...
- 钉子和小球_DP
Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端 ...
随机推荐
- GC原理---对象可达判断
对象可达判断 引用计数算法(Reference Counting) 给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值加1:当引用失效时,计数器减1:任何时刻计数器都为0的对象就是不可能再被 ...
- 微信小程序跳转页面时参数过长导致参数丢失
问题描述: 微信小程序:跳转页面时传参,参数过长导致参数丢失 跳转到文章详情页时,使用的文章链接e.currentTarget.dataset.id过长导致参数丢失 handleClickArticl ...
- HDU-1719 Friend 数学推导
Friend HDU - 1719 Friend number are defined recursively as follows. (1) numbers 1 and 2 are friend n ...
- 如何给gridControl动态的添加合计
for (int i = 0; i < this.dsHz.Tables[0].Columns.Count; i++) { if (dsHz.Tables[0].Columns[i].DataT ...
- 使用jstack排查多线程死锁、阻塞
问题: 针对线上多线程死锁.阻塞,跑着跑着就卡住了 查看线上线程池的状态 jstack用于生成java虚拟机当前时刻的线程快照. 线程快照是当前java虚拟机内每一条线程正在执行的方法堆栈的集合,生成 ...
- IDEA不能读取配置文件,springboot配置文件无效、IDEA resources文件夹指定
- SATA接口、PCI/PCIe、NVMe的介绍
SATA接口.PCI/PCIe.NVMe的介绍 SATA接口 SATA是Serial ATA的缩写,即串行ATA. SATA已经完全取代旧式PATA(Parallel ATA或旧称IDE)接口的旧式硬 ...
- [CrackMe]160个CrackMe之001
吾爱破解专题汇总:[反汇编练习]160个CrackME索引目录1~160建议收藏备用 一.Serial/Name 之 暴力破解 1. 熟悉界面:很常规的一个界面,输入完账号密码之后会进行验证. 2. ...
- Lucene的全文检索学习
Lucene的官方网站(Apache的顶级项目):http://lucene.apache.org/ 1.什么是Lucene? Lucene 是 apache 软件基金会的一个子项目,由 Doug C ...
- 操作系统原理之I/O设备管理(第六章上半部分)
一.I/O系统的组成 I/O系统不仅包括各种I/O设备,还包括与设备相连的设备控制器,有些系统还配备了专⻔⽤ 于输⼊/输出控制的专⽤计算机,即通道.此外,I/O系统要通过总线与CPU.内存相连. I/ ...
,其中i为格子的编号,从左至右依次为0,1,...,n。 