【bzoj3545】[ONTAK2010]Peaks

2014年8月26日3,1512

Description

在Bytemountains有N座山峰,每座山峰有他的高度h_i。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。

Input

第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。

Output

对于每组询问,输出一个整数表示答案。

Sample Input

10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
1 5 6
1 5 8
8 9 2

Sample Output

6
1
-1
8

HINT

【数据范围】
N<=10^5, M,Q<=5*10^5,h_i,c,x<=10^9。

题解

  离散后排序,维护加边顺序,然后就是线段树合并了,权值线段树。

 #include<cstring>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<cstdio> #define N 100007
#define M 500007
#define ll long long
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch>''||ch<''){if (ch=='-') f=-;ch=getchar();}
while(ch<=''&&ch>=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,q,sz;
int fa[N],rt[N],ans[M],disc[N],h[N];
int siz[M*],ls[M*],rs[M*];
struct Node
{
int x,y,difficulty;
}a[M];
struct Date
{
int x,limit,k,id;
}b[M]; int find(int num)
{
if (fa[num]!=num) fa[num]=find(fa[num]);
return fa[num];
}
bool cmp(Node x,Node y)
{
return x.difficulty<y.difficulty;
}
bool cmp1(Date x,Date y)
{
return x.limit<y.limit;
} int merge(int x,int y)
{
if (!x)return y;
if (!y)return x;
if (!ls[x]&&!rs[x])
{
siz[x]=siz[x]+siz[y];
return x;
}
ls[x]=merge(ls[x],ls[y]);
rs[x]=merge(rs[x],rs[y]);
siz[x]=siz[ls[x]]+siz[rs[x]];
return x;
}
void ins(int &p,int l,int r,int z)
{
if (!p)p=++sz,siz[p]=;
if (l==r) return;
int mid=(l+r)>>;
if (z<=mid)ins(ls[p],l,mid,z);
else ins(rs[p],mid+,r,z);
}
int query(int p,int l,int r,int rank)
{
if (l==r) return l;
int mid=(l+r)>>;
if (rank<=siz[ls[p]])return query(ls[p],l,mid,rank);
else return query(rs[p],mid+,r,rank-siz[ls[p]]);
}
void solve()
{
int now=;
for (int i=;i<=q;i++)
{
while(now<m&&a[now+].difficulty<=b[i].limit)
{
int x=find(a[now+].x),y=find(a[now+].y);
if (x!=y)
{
fa[y]=x;
rt[x]=merge(rt[x],rt[y]);
}
now++;
}
int x=find(b[i].x);
if (siz[rt[x]]<b[i].k) ans[b[i].id]=-;
else ans[b[i].id]=disc[query(rt[x],,n,siz[rt[x]]-b[i].k+)];
}
for (int i=;i<=q;i++)
printf("%d\n",ans[i]);
}
int main()
{
freopen("fzy.in","r",stdin);
freopen("fzy.out","w",stdout); n=read(),m=read(),q=read();
for (int i=;i<=n;i++)
disc[i]=h[i]=read(),fa[i]=i;
sort(disc+,disc+n+);
for (int i=;i<=n;i++)
h[i]=lower_bound(disc+,disc+n+,h[i])-disc;
for (int i=;i<=n;i++)
ins(rt[i],,n,h[i]); for (int i=;i<=m;i++)
a[i].x=read(),a[i].y=read(),a[i].difficulty=read();
sort(a+,a+m+,cmp);
for (int i=;i<=q;i++)
b[i].x=read(),b[i].limit=read(),b[i].k=read(),b[i].id=i;
sort(b+,b+q+,cmp1);
solve();
}

【bzoj3545】[ONTAK2010]Peaks 线段树合并的更多相关文章

  1. BZOJ.3545.[ONTAK2010]Peaks(线段树合并)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. \(Solut ...

  2. Peaks 线段树合并

    Peaks 线段树合并 \(n\)个带权值\(h_i\)山峰,有\(m\)条山峰间双向道路,\(q\)组询问,问从\(v_i\)开始只经过\(h_i\le x\)的路径所能到达的山峰中第\(k\)高的 ...

  3. bzoj3545 Peaks 线段树合并

    离线乱搞... 也就是一个线段树合并没什么 #include<algorithm> #include<iostream> #include<cstring> #in ...

  4. 【线段树合并】bzoj3545: [ONTAK2010]Peaks

    1A还行 Description 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问, ...

  5. [BZOJ3545] [ONTAK2010]Peaks(线段树合并 + 离散化)

    传送门 由于困难值小于等于x这个很恶心,可以离线处理,将边权,和询问时的x排序. 每到一个询问的时候,将边权小于等于x的都合并起来再询问. .. 有重复元素的线段树合并的时间复杂度是nlog^2n # ...

  6. BZOJ3545 Peaks 离线处理+线段树合并

    题意: 在Bytemountains有N座山峰,每座山峰有他的高度h_i.有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经 ...

  7. bzoj3545: [ONTAK2010]Peaks 重构树 主席树

    题目链接 bzoj3545: [ONTAK2010]Peaks 题解 套路重构树上主席树 代码 #include<cstdio> #include<algorithm> #de ...

  8. 线段树合并&&启发式合并笔记

    这俩东西听起来很高端,实际上很好写,应用也很多~ 线段树合并 线段树合并,顾名思义,就是建立一棵新的线段树保存原有的两颗线段树的信息. 考虑如何合并,对于一个结点,如果两颗线段树都有此位置的结点,则直 ...

  9. bzoj3545 [ONTAK2010]Peaks、bzoj3551 [ONTAK2010]Peaks加强版

    题目描述: bzoj3545,luogu bzoj3551 题解: 重构树+线段树合并. 可以算是板子了吧. 代码(非强制在线): #include<cstdio> #include< ...

随机推荐

  1. HDU 4274 Spy's Work (树形DP,模拟)

    题意: 给定一棵树,每个节点代表一个员工,节点编号小的级别就小,那么点1就是boss了.接下来给出对m个点的限制,有3种符号分别是op=“大于/小于/等于”,表示以第i个点为根的子树所有人的工资之和  ...

  2. Docker镜像的目录存储讲解

    我们成功安装完docker后,执行命令行sudo docker run hello-world, 如果是第一次执行,则会从远程拉取hello-world的镜像到本地,然后运行,显示hello worl ...

  3. C#反射调用小DEMO

    程序集的源代码: namespace DesignMode { class IOCTest { public void TestO() { Console.WriteLine("O方法&qu ...

  4. HTML5资源汇总(更新游戏引擎cocos2d-html5)

    我也是现学现用,想了解的可以看看效果,想知道实现的也有源码 http://cocos2d-html5.org Cocos2d-HTML5 API和Cocos2d-x一致,同样的代码可以支持cocos2 ...

  5. jQuery中ready方法的实现

    https://blog.csdn.net/major_zhang/article/details/80146674 先普及一下jquery.ready()和window.onload,window. ...

  6. C++基础:虚函数、重载、覆盖、隐藏<转>

    转自:http://www.2cto.com/kf/201404/291772.html 虚函数总是跟多态联系在一起,引入虚函数可以使用基类指针对继承类对象进行操作! 虚函数:继承接口(函数名,参数, ...

  7. Codeforces Round #277.5 (Div. 2)-A. SwapSort

    http://codeforces.com/problemset/problem/489/A A. SwapSort time limit per test 1 second memory limit ...

  8. selenium-浏览器操作方法

    前戏 浏览器都有哪些方法呢?最大化,设置浏览器窗口的大小,刷新,前进,后退等等,让我们来一一介绍 获取网站titie from selenium import webdriver from time ...

  9. GIMP如何创建layer masks,创建,删除,禁用,复制mask

    这次案例是背景替换,采用创建一个新的layer masks: 前期准备好要处理的图片:     1.创建一个新的图层,选择Layer,点击Mask,选择Add Layer Mask: 根据情况选择合适 ...

  10. angular 列表渲染机制

    watchCollection:监听集合元素的变化,而不能监听到集合元素内部的属性变化,只要集合中元素的引用没有发生变化,则认为无变化.用这个api也可以监听普通对象的第一层属性变化. watch:监 ...