BZOJ2654 tree 【二分 + 最小生成树】
题目
给你一个无向带权连通图,每条边是黑色或白色。让你求一棵最小权的恰好有need条白色边的生成树。
题目保证有解。
输入格式
第一行V,E,need分别表示点数,边数和需要的白色边数。
接下来E行,每行s,t,c,col表示这边的端点(点从0开始标号),边权,颜色(0白色1黑色)。
输出格式
一行表示所求生成树的边权和。
V<=50000,E<=100000,所有数据边权为[1,100]中的正整数。
输入样例
2 2 1
0 1 1 1
0 1 2 0
输出样例
2
题解
又是一个神奇的解法
解法似乎很合理,,但又不知如何证明
假如我们直接求一次最小生成树,白边的数量是无法预知的
但有一点是肯定的:随着白边边权的减小,最小生成树中的白边数量增加
我们就可以二分白边改变的边权,检验最终生成树中白边的数量是否>=need【黑白边权相同时优先选白,保证结果白边尽可能多】
由于题目保证有解,所以最小的不小于need的方案就是最终结果
最后ans要减去need * 白边加的权值
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int pre[maxn],n,m,need,ans;
struct EDGE{int a,b,v,c;}e[maxn];
inline bool operator <(const EDGE& a,const EDGE& b){
return a.v == b.v ? a.c < b.c : a.v < b.v;
}
int find(int u){return u == pre[u] ? u : pre[u] = find(pre[u]);}
bool check(int x){
for (int i = 1; i <= m; i++)
if (!e[i].c) e[i].v += x;
sort(e + 1,e + 1 + m);
for (int i = 1; i <= n; i++) pre[i] = i;
int fa,fb,cnt = n,tot = 0; ans = 0;
for (int i = 1; i <= m && cnt > 1; i++){
fa = find(e[i].a); fb = find(e[i].b);
if (fa != fb){
pre[fb] = fa;
cnt--; ans += e[i].v;
if (!e[i].c) tot++;
}
}
ans -= need * x;
for (int i = 1; i <= m; i++)
if (!e[i].c) e[i].v -= x;
if (tot >= need) return true;
return false;
}
int main(){
n = read(); m = read(); need = read();
for (int i = 1 ; i <= m; i++){
e[i].a = read() + 1; e[i].b = read() + 1;
e[i].v = read(); e[i].c = read();
}
int l = -100,r = 100,mid;
while (l < r){
mid = l + r + 1 >> 1;
if (check(mid)) l = mid;
else r = mid - 1;
}
check(l);
printf("%d\n",ans);
return 0;
}
BZOJ2654 tree 【二分 + 最小生成树】的更多相关文章
- 【BZOJ2654】tree 二分+最小生成树
[BZOJ2654]tree Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need ...
- BZOJ2654: tree 二分答案+最小生成树
Description 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. Input 第一行V,E,need分别表示点数,边数和需要的白色 ...
- BZOJ 2654: tree(二分 最小生成树)
Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 2901 Solved: 1196[Submit][Status][Discuss] Descript ...
- [BZOJ2654]tree(二分+Kruskal)
2654: tree Time Limit: 30 Sec Memory Limit: 512 MBSubmit: 2733 Solved: 1124[Submit][Status][Discus ...
- [国家集训队2012]tree(陈立杰) 题解(二分+最小生成树)
tree 时间限制: 3 Sec 内存限制: 512 MB 题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 输入 第一行V, ...
- 2021.07.19 BZOJ2654 tree(生成树)
2021.07.19 BZOJ2654 tree(生成树) tree - 黑暗爆炸 2654 - Virtual Judge (vjudge.net) 重点: 1.生成树的本质 2.二分 题意: 有一 ...
- hdu4786 Fibonacci Tree (最小生成树)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:给定图的n个点和m条双向边,告诉你每条边的权值.权值为1表示该边是白边,权值为0表示该边为 ...
- 二分+最小生成树【bzoj2654】: tree
2654: tree 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树. 题目保证有解. 二分答案,然后跑最小生成树判断. 注意优先跑白色边. code: ...
- [bzoj2654] tree 最小生成树kruskal+二分
题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. 输入格式 第一行V,E,need分别表示点数,边数和需要的白色边数.接下来E行, ...
随机推荐
- github入门之基本操作--4
1.初始化仓库 如果成功执行git init 命令,该目录下会生成一个.git的目录 2.查看仓库状态 *注: 实际工作中,git status使用次数非常多,一定要记住.因为当工作树和仓库被操作的过 ...
- Eclipse下对MAVEN进行junit软件测试
一.Maven project management and build automation tool, more and more developers use it to manage the ...
- 查看mysql已有用户并删除
查看: SELECT DISTINCT CONCAT('User: ''',user,'''@''',host,''';') AS query FROM mysql.user; 删除: drop us ...
- OC 导入类 #import和@class 区别
objective-c中#import和@class的区别 在Objective-C中,可以使用#import和@class来引用别的类型, 但是你知道两者有什么区别吗? @class叫做forwar ...
- 讲课笔记3——CSS
背景常见样式: width:600px; height:800px; background: url(bg.jpg) no-repeat 40px 20px fixed gray ; * ...
- 团队作业-Beta冲刺第二天
这个作业属于哪个课程 <https://edu.cnblogs.com/campus/xnsy/SoftwareEngineeringClass1> 这个作业要求在哪里 <https ...
- Asp.Net Core 入门(五)—— 布局视图_Layout.cshtml
布局视图和我们在Asp.Net MVC一样,布局视图_Layout.cshtml使得所有视图保持一致的外观变得更加容易,因为我们只有一个要修改的布局视图文件,更改后将立即反映在整个应用程序的所有视图中 ...
- shell补充知识点
一.cut(截取) 1.按字节截取(-b) 例:/etc/passwd文件截取 head -5 passwd | cut -b 1-4 ----->截取1-4的字节 head -5 passwd ...
- Multi Paxos
Multi Paxos [2] 通过basic paxos 以上步骤分布式系统已经能确定一个值,“只确定一个值有什么用?这可解决不了我面临的问题.” 你心中可能有这样的疑问. 原simple paxo ...
- javaEE(11)_事务处理
一.事务的概念 •事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. •例如:A——B转帐,对应于如下两条sql语句 update from account set mon ...