论文背景:

IEEE International Conference on Computer Vision 2015

Ziwei Liu1, Ping Luo1, Xiaogang Wang2, Xiaoou Tang1
1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electronic Engineering, The Chinese University of Hong Kong

论文贡献:

1.背景独立的情况下提升识别人脸的准确率,如下图与state_of_art的方案对比

2.识别人脸细节属性

3.开发者福音:提供了一个包含20万张标记了40个常用属性的人像数据库celebA(基于celebFace[1])和LFWA(基于LFW[2])

模型架构:

1.Lneto定位头部和肩部

2.Lnets进一步定位脸

3.Anet最后接全连接层进行属性预测

4.用SVM做多个全连接层的属性分类

具体网络结构,使用了参数局部共享和全局共享混合的策略:

More specifically, the network structures of LNeto and
LNets are the same as shown in Fig.3 (a) and (b), which
stack two max-pooling and five convolutional layers (C1 to

C5) with globally shared filters. These filters are recurrently

applied at every location of the image and are able to
account for large face translation and scaling. ANet stacks
four convolutional layers (C1 to C4), three max-pooling
layers, and one fully-connected layer (FC), where the filters
at C1 and C2 are globally shared, while the filters at C3
and C4 are locally shared. As shown in Fig.3 (c), the
response maps at C2 and C3 are divided into grids with
non-overlapping cells, each of which learns different filters.
The locally shared filters have been proved effective for
face related problems [24, 23], because they can capture
different information from different face parts. The network
structures are specified in Fig.3. For instance, the filters
at C1 of LNeto has 96 channels and the filter size in each
channel is 11113, as the input image xo contains three
color channels.

crop头像时可能会遭遇多目标检测问题,文章使用了每个位置求响应密度的空间距离的方法来解决

【1】Y. Sun, X. Wang, and X. Tang. Deep learning face
representation by joint identification-verification. In NIPS,
2014.

【2】G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October
2007.

一点随想:这个结合生成模型,比如gan,可能可以做一件有趣的事:根据语义生成带属性的角色

《Deep Learning Face Attributes in the Wild》论文笔记的更多相关文章

  1. 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记

    论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...

  2. [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)

    https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...

  3. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  4. 论文笔记——Rethinking the Inception Architecture for Computer Vision

    1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...

  5. 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells

    Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...

  6. 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware

    ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...

  7. 论文笔记:DARTS: Differentiable Architecture Search

    DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...

  8. 论文笔记:Progressive Neural Architecture Search

    Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...

  9. 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...

  10. 论文笔记系列-DARTS: Differentiable Architecture Search

    Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...

随机推荐

  1. P2384 最短路 洛谷

    https://www.luogu.org/problem/show?pid=2384 题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会 ...

  2. springboot 第一个程序

    idea --> new project --> 选择Spirng Initializr --> next 傻瓜式操作  --> 添加web依赖 项目基本结构: 创建contr ...

  3. DTrace C++ Mysteries Solved 转

      I’ve been using DTrace on Leopard in my recent work, and while it’s a great tool, the C++ support ...

  4. 百亿级企业级 RPC 框架开源了!

    今天给大家介绍给一款性能卓越的 RPC 开源框架,其作者就是我推荐每个 Java 程序员都应该看的<Java 生态核心知识点整理>的原作者张玉龙. 说实话我第一次看到这个资料的时候,就感觉 ...

  5. 随机森林、gbdt算法

    http://blog.csdn.net/songzitea/article/details/10035757 http://blog.csdn.net/holybin/article/details ...

  6. 【深度探索C++对象模型】data语义学

    class X{}; class Y :public virtual X{}; class Z :public virtual X{}; class A :public Y, public Z{}; ...

  7. 多硬盘分区管理fdisk

    原文:http://blog.fens.me/linux-fdisk/ ---------------------------------------------------------------- ...

  8. OSX: 第三方部署Profile的方法和比較

    眼下至少有三个第三方部署Profile的方法. 一个Profile Handler, 是利用Launchd对制定文件夹改变而激活的机制,把须要的profiles文件斗存放在制定目标机器的文件夹内,系统 ...

  9. [原创+分享]Mandelbrot Explorer

    Mandelbrot Explorer 是一款用于在MandelBort集/Julia集上进行无限漫游的软件,使用VS2013+CUDA6.5开发而成.它也是我学习CUDA开发的一个小小的成果,欢迎大 ...

  10. EditText设置光标位置问题

    普通设置 EditText 光标显示位置的方法就是 et.setSelection(text.length()); et.setSelection(0); 设置0 就是第一位了. 设置text长度就最 ...