《Deep Learning Face Attributes in the Wild》论文笔记
论文背景:
IEEE International Conference on Computer Vision 2015
Ziwei Liu1, Ping Luo1, Xiaogang Wang2, Xiaoou Tang1
1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electronic Engineering, The Chinese University of Hong Kong
论文贡献:
1.背景独立的情况下提升识别人脸的准确率,如下图与state_of_art的方案对比
2.识别人脸细节属性
3.开发者福音:提供了一个包含20万张标记了40个常用属性的人像数据库celebA(基于celebFace[1])和LFWA(基于LFW[2])
模型架构:
1.Lneto定位头部和肩部
2.Lnets进一步定位脸
3.Anet最后接全连接层进行属性预测
4.用SVM做多个全连接层的属性分类
具体网络结构,使用了参数局部共享和全局共享混合的策略:
More specifically, the network structures of LNeto and
LNets are the same as shown in Fig.3 (a) and (b), which
stack two max-pooling and five convolutional layers (C1 to
C5) with globally shared filters. These filters are recurrently
applied at every location of the image and are able to
account for large face translation and scaling. ANet stacks
four convolutional layers (C1 to C4), three max-pooling
layers, and one fully-connected layer (FC), where the filters
at C1 and C2 are globally shared, while the filters at C3
and C4 are locally shared. As shown in Fig.3 (c), the
response maps at C2 and C3 are divided into grids with
non-overlapping cells, each of which learns different filters.
The locally shared filters have been proved effective for
face related problems [24, 23], because they can capture
different information from different face parts. The network
structures are specified in Fig.3. For instance, the filters
at C1 of LNeto has 96 channels and the filter size in each
channel is 11113, as the input image xo contains three
color channels.
crop头像时可能会遭遇多目标检测问题,文章使用了每个位置求响应密度的空间距离的方法来解决
【1】Y. Sun, X. Wang, and X. Tang. Deep learning face
representation by joint identification-verification. In NIPS,
2014.
【2】G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October
2007.
一点随想:这个结合生成模型,比如gan,可能可以做一件有趣的事:根据语义生成带属性的角色
《Deep Learning Face Attributes in the Wild》论文笔记的更多相关文章
- 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记
论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...
- [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...
- 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...
- 论文笔记——Rethinking the Inception Architecture for Computer Vision
1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...
- 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...
- 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...
- 论文笔记:DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...
- 论文笔记:Progressive Neural Architecture Search
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...
- 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...
- 论文笔记系列-DARTS: Differentiable Architecture Search
Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...
随机推荐
- c++之析构函数
#include<iostream>using namespace std;class A{ public: A(){cout<<"A constructi ...
- 新版VS-code如何自动换行?
文件 -> 首选项 -> 设置 -> 编辑器 找到 // 控制折行方式.可以选择: - "off" (禁用折行), - "on" (视区折行 ...
- 深入理解ajax系列第五篇
前面的话 一般地,使用readystatechange事件探测HTTP请求的完成.XHR2规范草案定义了进度事件Progress Events规范,XMLHttpRequest对象在请求的不同阶段触发 ...
- [USACO08OPEN]牛的车Cow Cars
题目描述 N (1 <= N <= 50,000) cows conveniently numbered 1..N are driving in separate cars along a ...
- BZOJ1704: [Usaco2007 Mar]Face The Right Way 自动转身机
n<=5000个数0或1,每次可以连续对固定长度区间取反,目标把所有1变0,求一个取反区间的固定长度K使取反次数最少. 答案关于K不单调,因此枚举K,对每个K扫一遍区间,遇到1就把连续K个数反转 ...
- Hashtable和HashMap 的区别
Hashtable和HashMap 第一点不同 主要是历史原因.Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现. 第二点不同 (也许 ...
- makefile的语法及写法(二)
3 Makefile书写规则 -------------------------------------------------------------------------------- 规则包 ...
- grunt安装,配置记录
进了新的公司,需要重构一个项目,从头开始.本人患懒癌已久,一直没有写博客的打算,也是因为资质还比较浅,写不出什么富有涵养的内容,后来想了想,就当自己的笔记吧.这次从新开始,未尝不是一个博客开始的好时机 ...
- sql 语句哪里添加单引号问题
1.sql 语句哪里添加单引号问题,哪些地方必须加双引号,否则sql语句会报错? :涉及varchar的值的时候,必须有单引号包括varchar值.int等其他字段类型,则不需要加单引号包括. 如: ...
- Mybatis各种模糊查询(转)
模糊查询: 工作中用到,写三种用法吧,第四种为大小写匹配查询 1. sql中字符串拼接 SELECT * FROM tableName WHERE name LIKE CONCAT(CONCAT('% ...