《Deep Learning Face Attributes in the Wild》论文笔记
论文背景:
IEEE International Conference on Computer Vision 2015
Ziwei Liu1, Ping Luo1, Xiaogang Wang2, Xiaoou Tang1
1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electronic Engineering, The Chinese University of Hong Kong
论文贡献:
1.背景独立的情况下提升识别人脸的准确率,如下图与state_of_art的方案对比

2.识别人脸细节属性

3.开发者福音:提供了一个包含20万张标记了40个常用属性的人像数据库celebA(基于celebFace[1])和LFWA(基于LFW[2])
模型架构:


1.Lneto定位头部和肩部
2.Lnets进一步定位脸
3.Anet最后接全连接层进行属性预测
4.用SVM做多个全连接层的属性分类
具体网络结构,使用了参数局部共享和全局共享混合的策略:
More specifically, the network structures of LNeto and
LNets are the same as shown in Fig.3 (a) and (b), which
stack two max-pooling and five convolutional layers (C1 to
C5) with globally shared filters. These filters are recurrently
applied at every location of the image and are able to
account for large face translation and scaling. ANet stacks
four convolutional layers (C1 to C4), three max-pooling
layers, and one fully-connected layer (FC), where the filters
at C1 and C2 are globally shared, while the filters at C3
and C4 are locally shared. As shown in Fig.3 (c), the
response maps at C2 and C3 are divided into grids with
non-overlapping cells, each of which learns different filters.
The locally shared filters have been proved effective for
face related problems [24, 23], because they can capture
different information from different face parts. The network
structures are specified in Fig.3. For instance, the filters
at C1 of LNeto has 96 channels and the filter size in each
channel is 11113, as the input image xo contains three
color channels.
crop头像时可能会遭遇多目标检测问题,文章使用了每个位置求响应密度的空间距离的方法来解决
【1】Y. Sun, X. Wang, and X. Tang. Deep learning face
representation by joint identification-verification. In NIPS,
2014.
【2】G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October
2007.
一点随想:这个结合生成模型,比如gan,可能可以做一件有趣的事:根据语义生成带属性的角色
《Deep Learning Face Attributes in the Wild》论文笔记的更多相关文章
- 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记
论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...
- [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...
- 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...
- 论文笔记——Rethinking the Inception Architecture for Computer Vision
1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...
- 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...
- 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...
- 论文笔记:DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...
- 论文笔记:Progressive Neural Architecture Search
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...
- 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...
- 论文笔记系列-DARTS: Differentiable Architecture Search
Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...
随机推荐
- 【multimap的应用】D. Array Division
http://codeforces.com/contest/808/problem/D #include<iostream> #include<cstdio> #include ...
- 【bzoj4260】 Codechef REBXOR trie树
Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN. Output 输出一行包含给定表达式可能的最大值. Sample Input ...
- POJ 2438 哈密顿回路
Children's Dining Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4730 Accepted: 754 ...
- 2017-10-04-afternoon
注意完全平方数统计时的特判 #include <cstdio> inline void read(int &x) { x=; register char ch=getchar(); ...
- hdu4085(斯坦纳树)
题意: 给你n,m,k ,分别表示有n个点,m条边,每条边有一个权值,表示修复这条边需要的代价,从前k个点中任取一个使其和后k个点中的某一个点,通过边连接,并且必须是一一对应,问最小的代价是多少. 分 ...
- LinkedList总结
1,LinkedList也是继承了List的接口 所以在LinkedList中存储的也是有序的,不唯一的数据 它采用的是链表式储存,所以比较适合用来执行插入,删除等功能 2,LinkedList特有的 ...
- DotProject首页、文档和下载 - 项目管理工具 - 开源中国社区
DotProject首页.文档和下载 - 项目管理工具 - 开源中国社区
- zmq.error.ZMQError: Address already in use
1.如下代码,启动的时候python app.py会报如题的错误 app.py #!/user/bin python # -*- coding:utf-8 -*- import os from dat ...
- XMLHttpRequest对象解读
<!DOCTYPE html> <html> <body> <script> function reqListener () { console.log ...
- 【转】Wireshark技巧-过滤规则和显示规则
原文: http://www.cnblogs.com/icez/p/3973873.html ----------------------------------------------------- ...