《Deep Learning Face Attributes in the Wild》论文笔记
论文背景:
IEEE International Conference on Computer Vision 2015
Ziwei Liu1, Ping Luo1, Xiaogang Wang2, Xiaoou Tang1
1Department of Information Engineering, The Chinese University of Hong Kong
2Department of Electronic Engineering, The Chinese University of Hong Kong
论文贡献:
1.背景独立的情况下提升识别人脸的准确率,如下图与state_of_art的方案对比

2.识别人脸细节属性

3.开发者福音:提供了一个包含20万张标记了40个常用属性的人像数据库celebA(基于celebFace[1])和LFWA(基于LFW[2])
模型架构:


1.Lneto定位头部和肩部
2.Lnets进一步定位脸
3.Anet最后接全连接层进行属性预测
4.用SVM做多个全连接层的属性分类
具体网络结构,使用了参数局部共享和全局共享混合的策略:
More specifically, the network structures of LNeto and
LNets are the same as shown in Fig.3 (a) and (b), which
stack two max-pooling and five convolutional layers (C1 to
C5) with globally shared filters. These filters are recurrently
applied at every location of the image and are able to
account for large face translation and scaling. ANet stacks
four convolutional layers (C1 to C4), three max-pooling
layers, and one fully-connected layer (FC), where the filters
at C1 and C2 are globally shared, while the filters at C3
and C4 are locally shared. As shown in Fig.3 (c), the
response maps at C2 and C3 are divided into grids with
non-overlapping cells, each of which learns different filters.
The locally shared filters have been proved effective for
face related problems [24, 23], because they can capture
different information from different face parts. The network
structures are specified in Fig.3. For instance, the filters
at C1 of LNeto has 96 channels and the filter size in each
channel is 11113, as the input image xo contains three
color channels.
crop头像时可能会遭遇多目标检测问题,文章使用了每个位置求响应密度的空间距离的方法来解决
【1】Y. Sun, X. Wang, and X. Tang. Deep learning face
representation by joint identification-verification. In NIPS,
2014.
【2】G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller.
Labeled faces in the wild: A database for studying face
recognition in unconstrained environments. Technical Report
07-49, University of Massachusetts, Amherst, October
2007.
一点随想:这个结合生成模型,比如gan,可能可以做一件有趣的事:根据语义生成带属性的角色
《Deep Learning Face Attributes in the Wild》论文笔记的更多相关文章
- 《Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition》论文笔记
论文题目:<Vision Permutator: A Permutable MLP-Like ArchItecture For Visual Recognition> 论文作者:Qibin ...
- [place recognition]NetVLAD: CNN architecture for weakly supervised place recognition 论文翻译及解析(转)
https://blog.csdn.net/qq_32417287/article/details/80102466 abstract introduction method overview Dee ...
- 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation
Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...
- 论文笔记——Rethinking the Inception Architecture for Computer Vision
1. 论文思想 factorized convolutions and aggressive regularization. 本文给出了一些网络设计的技巧. 2. 结果 用5G的计算量和25M的参数. ...
- 论文笔记:Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells
Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells 2019-04- ...
- 论文笔记:ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware
ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware 2019-03-19 16:13:18 Pape ...
- 论文笔记:DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...
- 论文笔记:Progressive Neural Architecture Search
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...
- 论文笔记:Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation
Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation2019-03-18 14:4 ...
- 论文笔记系列-DARTS: Differentiable Architecture Search
Summary 我的理解就是原本节点和节点之间操作是离散的,因为就是从若干个操作中选择某一个,而作者试图使用softmax和relaxation(松弛化)将操作连续化,所以模型结构搜索的任务就转变成了 ...
随机推荐
- 【HDOJ6299】Balanced Sequence(贪心)
题意:给定n个只有左右括号的序列,要求将它们重新排序使得匹配的括号对数最大. n<=1e5 s[i]<=1e5 sum s[i]<=5e6 思路: 先把每个串内部的匹配数量减去,剩下 ...
- 【BZOJ1717&POJ3261】Milk Patterns(后缀数组,二分)
题意:求字符串的可重叠的k次最长重复子串 n<=20000 a[i]<=1000000 思路:后缀数组+二分答案x,根据height分组,每组之间的height>=x 因为可以重叠, ...
- CODEVS5565 二叉苹果树
n<=100个点的根为1的二叉树,树边上有苹果,求保留Q<=n条边的最多苹果数. 树形DP,f[i][j]--节点i为根的子树保留j条边最优方案,f[i][0]=0,f[i][j]=max ...
- HUST 1328 String
11: KMP next 的强大 题意求前缀在S中出现的次数之和 next[j] 表示 S[0....NEXT[J]]==S[J-NEXT[J].....J]; 于是我们得到..后加入一个字符所得到新 ...
- 09-js数组常用方法
<html> <head> <title>js数组的常用操作</title> <meta charset="UTF-8"/&g ...
- hybird app 用 xcode ios打包 ipa 测试包并且安装真机测试
1.创建 ios 项目 1.用 cordova 创建一个 ios 项目 npm install -g cordova cordova create hello com.mydomain.hello H ...
- OpenWRT解决因PPPOE丢包导致频繁掉线问题
其关键在于这两个参数 lcp-echo-interval 1 #发送间隔秒 lcp-echo-failure 5 #5次未响应断开 因为OpenWRT默认的设置为1秒发送一次 5次没有响应就 ...
- Ansible 详细用法说明(一)
一.概述 运维工具按需不需要有代理程序来划分的话分两类: agent(需要有代理工具):基于专用的agent程序完成管理功能,puppet, func, zabbix agentless(无须代理工具 ...
- 实例 tar备份以日期命名
tar备份以日期命名****************************************************************************************#v ...
- org.hibernate.AnnotationException: No identifier specified for entity:
使用hibernate的e-r映射pojo类的时候遇到org.hibernate.AnnotationException: No identifier specified for entity的异常, ...