bzoj 3930: [CQOI2015]选数【快速幂+容斥】
参考:https://www.cnblogs.com/iwtwiioi/p/4986316.html
注意区间长度为1e5级别。
则假设n个数不全相同,那么他们的gcd小于最大数-最小数,证明:则gcdk2−gcdk1=gcd(k2−k1)>d
所以特判一下全相等的情况就行利润
然后把区间除以k,这样问题就转成了找gcd==1,设f[i]为gcd为i的方案数。从大到小枚举约数,快速幂计算选取选取情况,然后减去约束的倍数的f(容斥)
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005,mod=1e9+7;
int n,k,l,r,len,p,f[N];
int ksm(int a,int b)
{
int r=1;
while(b)
{
if(b&1)
r=1ll*r*a%mod;
a=1ll*a*a%mod;
b>>=1;
}
return r;
}
int main()
{
scanf("%d%d%d%d",&n,&k,&l,&r);
if(l<=k&&r>=k)
p=1;
l=(l-1)/k,r=r/k,len=r-l;
for(int i=len;i>=1;i--)
{
int x=l/i,y=r/i;
f[i]=(ksm(y-x,n)-y+x+mod)%mod;
for(int j=i*2;j<=len;j+=i)
f[i]=((f[i]-f[j])%mod+mod)%mod;
}
printf("%d\n",f[1]+p);
return 0;
}
bzoj 3930: [CQOI2015]选数【快速幂+容斥】的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 【刷题】BZOJ 3930 [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
- bzoj 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演
https://www.lydsy.com/JudgeOnline/problem.php?id=3930 https://blog.csdn.net/ws_yzy/article/details/5 ...
- BZOJ 3930: [CQOI2015]选数 莫比乌斯反演 + 杜教筛
求 $\sum_{i=L}^{R}\sum_{i'=L}^{R}....[gcd_{i=1}^{n}(i)==k]$ $\Rightarrow \sum_{i=\frac{L}{k}}^{\fra ...
- 【BZOJ】3930: [CQOI2015]选数
题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...
- 3930: [CQOI2015]选数
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1958 Solved: 979[Submit][Status][Discuss] Descripti ...
随机推荐
- poj - 3254 Corn Fields (状态压缩dp入门)
http://poj.org/problem?id=3254 参考:http://blog.csdn.net/accry/article/details/6607703 农夫想在m*n的土地上种玉米, ...
- Baby Step Giant Step model
******************************************** */ #include <stdio.h> #include <string.h> # ...
- [HDU4607]Park Visit(树上最长链)
HDU#4607. Park Visit 题目描述 Claire and her little friend, ykwd, are travelling in Shevchenko's Park! T ...
- POJ 3230 【DP】
题意: 某货旅行,在n个城市呆m天. 给出从第i个城市到第j个城市的路费,或者留在某个城市的生活费. 给出在第i天在第j个城市的收益. 可以在城市之间任意穿梭逗留没有其他特殊要求. 求收益最大是多少. ...
- asp.net core 集成JWT(一)
[什么是JWT] JSON Web Token(JWT)是目前最流行的跨域身份验证解决方案. JWT的官网地址:https://jwt.io/ 通俗地来讲,JWT是能代表用户身份的令牌,可以使用JWT ...
- Linux进程IPC浅析[进程间通信SystemV共享内存]
Linux进程IPC浅析[进程间通信SystemV共享内存] 共享内存概念,概述 共享内存的相关函数 共享内存概念,概述: 共享内存区域是被多个进程共享的一部分物理内存 多个进程都可把该共享内存映射到 ...
- VB6 如何连接MYSQL数据库
1 从官网下载MYSQL的ODBC,选择与自己操作系统对应的版本(前提是你安装了MYSQL) http://dev.mysql.com/downloads/connector/odbc/ 2 安装 ...
- LoadRunner 比较字符串是否相等
int strcmp ( const char *string1, const char *string2 );大小写敏感.int stricmp ( const char *string1, con ...
- Cookie防伪造防修改 电商课题:cookie防篡改
主要防止非法用户修改cookie信息,以及cookie的超时时间 传统cookie存储,Cookie(name, value),value很容易就被篡改. 防修改cookie存储,Cookie(nam ...
- 实战c++中的string系列--指定浮点数有效数字并转为string
上一篇博客讲了好几种方法进行number到string的转换,这里再单独说一下float或是double到string的转换. 还是处于控件显示的原因.比方说要显示文件的大小,我们从server能够获 ...