线段树优化建图+费用流

朴素的做法是每个强盗直接对每个区间的每个点连边,然后跑最大权匹配,这样有5000*5000条边,肯定过不去,那么我们用线段树优化一下,因为线段树能把一个O(n)的区间划分为O(logn)段

然后就建一棵线段树,每个节点向两个儿子连(inf,0)的边,叶子结点连向sink,(1,0),每个强盗向对应区间节点连边,这样边数就将为了nlogn条。据说正解是贪心?

抄了个板子

#include<bits/stdc++.h>
using namespace std;
const int N = , inf = 0x3f3f3f3f;
struct edge {
int nxt, to, f, c;
} e[N * ];
int n, m, k, source, sink, tot, cnt = , sum;
int head[N], pree[N], prev[N], vis[N], d[N];
inline void link(int u, int v, int f, int c)
{
e[++cnt].nxt = head[u];
head[u] = cnt;
e[cnt].f = f;
e[cnt].to = v;
e[cnt].c = c;
}
inline void insert(int u, int v, int f, int c)
{
link(u, v, f, c);
link(v, u, , -c);
}
bool spfa()
{
memset(d, -, sizeof(d));
d[source] = ;
queue<int> q;
q.push(source);
while(!q.empty())
{
int u = q.front();
q.pop();
vis[u] = ;
for(int i = head[u]; i; i = e[i].nxt) if(e[i].f && (d[e[i].to] < d[u] + e[i].c || d[e[i].to] == -))
{
pree[e[i].to] = i;
prev[e[i].to] = u;
d[e[i].to] = d[u] + e[i].c;
if(vis[e[i].to] == )
{
q.push(e[i].to);
vis[e[i].to] = ;
}
}
}
return d[sink] != -;
}
inline int Edmonds_Karp()
{
int ans = ;
while(spfa())
{
int now = sink, delta = inf;
while(now != source)
{
delta = min(delta, e[pree[now]].f);
now = prev[now];
}
now = sink;
while(now != source)
{
e[pree[now]].f -= delta;
e[pree[now] ^ ].f += delta;
now = prev[now];
}
ans += delta * d[sink];
}
return ans;
}
void build(int l, int r, int x)
{
if(l == r)
{
insert(x, sink, , );
return;
}
int mid = (l + r) >> ;
build(l, mid, x << );
build(mid + , r, x << | );
insert(x, x << , inf, );
insert(x, x << | , inf, );
}
void update(int l, int r, int x, int a, int b, int c, int pos)
{
if(l > b || r < a) return;
if(l >= a && r <= b)
{
insert(pos, x, , c);
return;
}
int mid = (l + r) >> ;
update(l, mid, x << , a, b, c, pos);
update(mid + , r, x << | , a, b, c, pos);
}
int main()
{
scanf("%d", &n);
sink = + n + ;
build(, , );
for(int i = ; i <= n; ++i)
{
int l, r, c;
scanf("%d%d%d", &l, &r, &c);
insert(source, i + , , );
update(, , , l, r - , c, i + );
}
printf("%d\n", Edmonds_Karp());
return ;
}

bzoj4276的更多相关文章

  1. 【BZOJ4276】[ONTAK2015]Bajtman i Okrągły Robin 线段树优化建图+费用流

    [BZOJ4276][ONTAK2015]Bajtman i Okrągły Robin Description 有n个强盗,其中第i个强盗会在[a[i],a[i]+1],[a[i]+1,a[i]+2 ...

  2. BZOJ4276 : [ONTAK2015]Bajtman i Okrągły Robin

    建立线段树, S向每个叶子连边,容量1,费用0. 孩子向父亲连边,容量inf,费用0. 每个强盗向T连边,容量1,费用为c[i]. 对应区间内的点向每个强盗,容量1,费用0. 求最大费用流即可. #i ...

  3. 最小/大费用最大流模板(codevs1914)

    void addedge(int fr,int to,int cap,int cos){ sid[cnt].fr=fr;sid[cnt].des=to;sid[cnt].cap=cap;sid[cnt ...

  4. BZOJ.2034.[2009国家集训队]最大收益(二分图匹配 贪心)

    题目链接 双倍经验:BZOJ.4276.[ONTAK2015]Bajtman i Okrągły Robin(然而是个权限题.区间略有不同) \(Description\) 有\(n\)个任务,完成一 ...

随机推荐

  1. bzoj 3223 文艺平衡树 splay 区间翻转

    Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 17715  Solved: 7769[Submit][Status][ ...

  2. PHP应用日期与时间

    <?php/* 时间戳 * * 1. 是一个整数 * 2. 1970-1-1 到现在的秒数 1213212121 * * 2014-02-14 11:11:11 * * 02/14/2014 1 ...

  3. react.js 父子组件数据绑定实时通讯

    import React,{Component} from 'react' import ReactDOM from 'react-dom' class ChildCounter extends Co ...

  4. php装饰者模式

    php装饰者模式 装饰模式指的是在不必改变原类文件和使用继承的情况下,动态地扩展一个对象的功能.它是通过创建一个包装对象,也就是装饰来包裹真实的对象. 示例: A.B.C编辑同一篇文章. class ...

  5. 毕业bg--hdu1881(01背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=1881 01 背包  先按发起人离开的时间从小到大排序 然后再套01背包的模板 #include <iost ...

  6. R-Tree空间索引算法的研究历程和最新进展分析

    转自原文 R-Tree空间索引算法的研究历程和最新进展分析,2008 摘要:本文介绍了空间索引的概念.R-Tree数据结构和R-Tree空间索引的算法描述,并从R-Tree索引技术的优缺点对R-Tre ...

  7. 过滤器链chain.doFilter(request,response)含义

    过滤器的生命周期一般都要经过下面三个阶段: 初始化 当容器第一次加载该过滤器时,init() 方法将被调用.该类在这个方法中包含了一个指向 Filter Config 对象的引用. 过滤 过滤器的大多 ...

  8. Java SpringMVC实现PC端网页微信扫码支付完整版

    一:前期微信支付扫盲知识 前提条件是已经有申请了微信支付功能的公众号,然后我们需要得到公众号APPID和微信商户号,这个分别在微信公众号和微信支付商家平台上面可以发现.其实在你申请成功支付功能之后,微 ...

  9. C/C++实现bmp文件读写

    之前知道点bmp图的格式,然后对8位操作过,然后今天弄了一下24位真彩色的. C++读取.旋转和保存bmp图像文件编程实现 主要是理解bmp文件的格式8/24位的区别 8位图有调色板,24位在文件头和 ...

  10. C++设计模式之适配器模式(二)

    3.Socket网络通信的设计与实现------类适配器 除了对象适配器模式之外.适配器模式另一种形式.那就是类适配器模式,类适配器模式和对象适配器模式最大的差别在于适配器和适配者之间的关系不同,对象 ...