Problem Statement

Hero has just constructed a very specific graph. He started with n isolated vertices, labeled 0 through n-1. For each vertex i Hero then chose a vertex a[i] (other than i) and he added an edge that connected i and a[i]. This way he created a graph with n vertices and n edges. Note that if a[x]=y and a[y]=x, the vertices x and y were connected by two different edges. Hero now wants to perform the following procedure:
  1. Add a new isolated vertex number n.
  2. Choose a subset M of the original vertices.
  3. For each x in M, erase an edge between vertices x and a[x].
  4. For each x in M, add a new edge between vertices x and n.

Hero's goal is to create a final graph in which the vertices 0 through n-1 are all in the same connected component. (I.e., there must be a way to reach any of these vertices from any other of them by following one or more consecutive edges, possibly visiting vertex n along the way.) Note that Hero does not care whether vertex n is in the same component as the other vertices: both possibilities are fine. In step 2 of the above procedure Hero has 2^n possible subsets to choose from. A choice of M is good if it produces a graph with the desired property. Count how many of the 2^n possibilities are good choices. Return that count as a long.

Definition

  • ClassSunnygraphs2
  • Methodcount
  • Parametersvector<int>
  • Returnslong long
  • Method signaturelong long count(vector<int> a)
(be sure your method is public)

Limits

  • Time limit (s)2.000
  • Memory limit (MB)256

Constraints

  • a will contain n elements.
  • n will be between 2 and 50, inclusive.
  • Each element in a will be between 0 and n - 1, inclusive.
  • For each i between 0 and n - 1 holds a[i] != i.

Test cases

  1.  
    • a{ 1, 0 }
     

    Returns4

     
    The original graph contained the vertices 0 and 1. This pair of vertices was connected by two edges. Next, Hero added a new vertex 2. Then he had to choose one of four possible subsets M:

    • If he chose M = {}, the resulting graph contained the edges 0-1 and 0-1. The vertices 0 and 1 were in the same component.
    • If he chose M = {0}, the resulting graph contained the edges 0-1 and 0-2. The vertices 0 and 1 were in the same component.
    • If he chose M = {1}, the resulting graph contained the edges 0-1 and 1-2. The vertices 0 and 1 were in the same component.
    • Finally, if he chose M = {0, 1}, the resulting graph contained the edges 0-2 and 1-2. And again, the vertices 0 and 1 were in the same component. (In the resulting graph we can still go from vertex 0 to vertex 1, even though we have to go via vertex 2.)

    As all four choices of M are good, the correct answer is 4.

  2.  
    • a{ 1, 0, 0 }
     

    Returns7

     
    Here, M = {2} is not a good choice. This choice produces a graph with edges 0-1, 0-1, and 2-3. In this graph vertex 2 is not in the same component as vertices 0 and 1. The other seven possible choices of M are all good.
  3.  
    • a{ 2, 3, 0, 1 }
     

    Returns9

  4.  
    • a{ 2, 3, 0, 1, 0 }
     

    Returns18

  5.  
    • a{ 2, 3, 0, 1, 0, 4, 5, 2, 3 }
     

    Returns288

  6.  
    • a{ 29, 34, 40, 17, 16, 12, 0, 40, 20, 35, 5, 13, 27, 7, 29, 13, 14, 39, 42, 9, 30, 38, 27, 40, 34, 33, 42, 20, 29, 42, 12, 29, 30, 21, 4, 5, 7, 25, 24, 17, 39, 32, 9 }
     

    Returns6184752906240

     
    "Watch out for integer overflow."
  7.  
    • a{ 9, 2, 0, 43, 12, 14, 39, 25, 24, 3, 16, 17, 22, 0, 6, 21, 18, 29, 34, 35, 23, 43, 28, 28, 20, 11, 5, 12, 31, 24, 8, 13, 17, 10, 15, 9, 15, 26, 4, 13, 21, 27, 36, 39 }
     

    Returns17317308137473

题意。。看了很久。

其实就是用一个点n来连接其他联通分量,使得标号0~n-1这些点再一个联通分量中。

为了简化题目,假设原图中联通分量>=2,我们可以先找出原图中的环,因为按照题目规则,只有两个环分别拓展出一条边连接点n,使得所有联通分量和为1个联通分量。

下面解释一下样例3.

如图0,2是一个环   1,3是一个环。现在借助5把{4,0,2}和{1,3}这两个联通分量连接起来。先不考虑点4.那么{0,2}中有3种方案可以选择,{1,3}中有3中方案可以选则所以一共有9中方案。接下来考虑点4,那么挂上点4后,答案也是9.  所以种答案是18.

如果0~n-1这些点原来在一个联通分量中。那么 我们还要加上空集这种情况。

代码:

#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <typeinfo>
#include <fstream>
#define ll long long
using namespace std; class Sunnygraphs2 {
public:
int vis[]={};
int used[]={};
vector<int>edge[];
int num=;
void dfs(int u){
num++;used[u]=;
for(int i:edge[u])if(!used[i])dfs(i);
}
long long count(vector<int> a) {
int n=a.size();
int m=n;
for(int i=;i<n;i++){
edge[i].push_back(a[i]);
edge[a[i]].push_back(i);
}
dfs();
ll ans=;
int cnt=,mark=,cur;
for(int i=;i<n;i++){//找环
if(!vis[i]){
cur=i;cnt=mark=;
for(int j=;j<=;j++){
cur=a[cur];cnt++;//记录环中节点数
if(cur==i){
mark=;break;
}
}
if(mark){
cur=i;
for(int j=;j<=;j++){
vis[cur]=;
cur=a[cur];
}
ans*=(ll)pow(2ll,cnt)-;
m-=cnt;
}
}
}
ans*=(ll)pow(2ll,m);
if(num==n)ans++;//包含空集
return ans;
}
};

SRM691 Sunnygraphs2的更多相关文章

  1. ACM学习历程—TopCoder SRM691 Div2

    这是我的第一次打TC,感觉打的一般般吧.不过TC的题目确实挺有意思的. 由于是用客户端打的,所以就不发题目地址了. 300分的题: 这题大意是有一段序列只包含+和数字0~9. 一段序列的操作是,从头扫 ...

随机推荐

  1. Oracle获取最近执行的SQL语句

    注意:不是每次执行的语句都会记录(如果执行的语句是能在该表找到的则ORACLE不会再次记录,就是说本次执行的语句和上次或者说以前的语句一模一样则下面语句就查不出来的): select last_loa ...

  2. 分享21个基于jquery菜单导航的效果

    jquery导航菜单插件制作jquery动画菜单熔岩灯菜单效果更新时间:02月15日 14:53:03 虾米精选-菜单导航-导航菜单 0浏览 / ★★★☆☆星级 / 未知软件大小/ jquery导航菜 ...

  3. python和搜索

    # -*- coding: UTF-8 -*- import re # 搜索逻辑 def querylogic(list): query = {} if len(list) > 1 or len ...

  4. PTA 04-树4 是否同一棵二叉搜索树 (25分)

    题目地址 https://pta.patest.cn/pta/test/15/exam/4/question/712 5-4 是否同一棵二叉搜索树   (25分) 给定一个插入序列就可以唯一确定一棵二 ...

  5. Hankson 的趣味题(codevs 1172)

    题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在 ...

  6. Codeforces Round #297 (Div. 2) D. Arthur and Walls [ 思维 + bfs ]

    传送门 D. Arthur and Walls time limit per test 2 seconds memory limit per test 512 megabytes input stan ...

  7. Wannafly模拟赛2 B river(拉格朗日乘数法)

    题目 https://www.nowcoder.com/acm/contest/4/B题意 有n条南北流向的河并列排着,水流速度是v,现在你需要从西岸游到东岸,总共T个时间,你的游泳速度是u,问东岸的 ...

  8. <项目><day12>通讯录(视频)

    1 需求分析(需求分析师) 功能分析: 1)添加联系人 2)修改联系人 3)删除联系人 4)查询所有联系人 2 需求设计(系统分析师/架构师/资深开发人员) 2.1设计实体(抽象实体) 联系人实体: ...

  9. [转] Oracle数据库维护常用SQL语句集合

           原文地址 进程相关: 1. 求当前会话的SID,SERIAL# SELECT Sid, Serial# FROM V$session WHERE Audsid = Sys_Context ...

  10. MD5加密Java工具类

    原文:http://www.open-open.com/code/view/1421764946296 import java.security.MessageDigest; public class ...