题目链接:http://poj.org/problem?id=1236

Network of Schools
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 19859   Accepted: 7822

Description

A number of schools are connected to a computer network. Agreements have been developed among those schools: each school maintains a list of schools to which it distributes software (the “receiving schools”). Note that if B is in the distribution list of school A, then A does not necessarily appear in the list of school B 
You are to write a program that computes the minimal number of schools that must receive a copy of the new software in order for the software to reach all schools in the network according to the agreement (Subtask A). As a further task, we want to ensure that by sending the copy of new software to an arbitrary school, this software will reach all schools in the network. To achieve this goal we may have to extend the lists of receivers by new members. Compute the minimal number of extensions that have to be made so that whatever school we send the new software to, it will reach all other schools (Subtask B). One extension means introducing one new member into the list of receivers of one school. 

Input

The first line contains an integer N: the number of schools in the network (2 <= N <= 100). The schools are identified by the first N positive integers. Each of the next N lines describes a list of receivers. The line i+1 contains the identifiers of the receivers of school i. Each list ends with a 0. An empty list contains a 0 alone in the line.

Output

Your program should write two lines to the standard output. The first line should contain one positive integer: the solution of subtask A. The second line should contain the solution of subtask B.

Sample Input

5
2 4 3 0
4 5 0
0
0
1 0

Sample Output

1
2

Source

 
 
 
题解:
1.利用Tarjan算法求出每个强连通分量,然后进行缩点(以下的分析中,结点是指经过缩点之后的强连通分量)。
2.如果强连通分量的个数为1,即表明题目所给的图为强连通图。故可直接输出答案:1, 0。否则:
首先求出每个强连通分量的入度和出度,然后:
task A:显然,只需要为每个入度为0的结点输入一份资料即可,其余入度不能为0的结点都可以从指向它的结点获取资料。
task B:每增加一条边,图中必有一个的结点入度增加1, 必有一个结点的出度增加1。设图中有a个结点的入度为0, b个结点的出度为0,假设a>=b,那么首先我们可以增加b条边,既能实现图中所有结点的出度都不能为0,但是还剩下a-b个结点的入度为0,此时,我们只需再添加a-b条边,既可以实现图中所有结点的入度都不为0了,所以总共需要添加a条边。当b>a时,需要添加b条边。综上结论:如果图中有a个结点的入度为0, b个结点的出度为0,那么只需添加 max(a,b)条边,即可使原图成为强连通图。前提是原图为简单图,且结点个数大于1。
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e2+; struct Edge
{
int to, next;
}edge[MAXN*MAXN];
int head[MAXN], tot; int index, Low[MAXN], DFN[MAXN];
int top, Stack[MAXN], Instack[MAXN];
int scc, Belong[MAXN];
int Indegree[MAXN], Outdegree[MAXN]; void addedge(int u, int v)
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++index;
Stack[top++] = u;
Instack[u] = ;
for(int i = head[u]; i!=-; i = edge[i].next)
{
v = edge[i].to;
if(!DFN[v])
{
Tarjan(v);
Low[u] = min(Low[u], Low[v]);
}
else if(Instack[v])
Low[u] = min(Low[u], Low[v]);
} if(Low[u]==DFN[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = ;
Belong[v] = scc;
}while(v!=u);
}
} void init()
{
tot = ;
memset(head, -, sizeof(head)); index = scc = top = ;
memset(DFN, , sizeof(DFN));
memset(Low, , sizeof(Low));
memset(Instack, , sizeof(Instack)); memset(Indegree, , sizeof(Indegree));
memset(Outdegree, , sizeof(Outdegree));
} int main()
{
int n;
while(scanf("%d",&n)!=EOF)
{
init();
for(int u = ; u<=n; u++)
{
int v;
while(scanf("%d", &v) && v)
addedge(u, v);
} for(int i = ; i<=n; i++)
if(!DFN[i])
Tarjan(i); if(scc==)
{
printf("%d\n%d\n", , );
continue;
} for(int u = ; u<=n; u++)
{
for(int i = head[u]; i!=-; i = edge[i].next)
{
int v = edge[i].to;
if(Belong[u]==Belong[v]) continue;
Outdegree[Belong[u]]++;
Indegree[Belong[v]]++;
}
} int Innum = , Outnum = ;
for(int i = ; i<=scc; i++)
{
if(Indegree[i]==) Innum++;
if(Outdegree[i]==) Outnum++;
} printf("%d\n%d\n", Innum, max(Innum, Outnum));
}
}

POJ1236 Network of Schools —— 强连通分量 + 缩点 + 入出度的更多相关文章

  1. poj-1236.network of schools(强连通分量 + 图的入度出度)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 27121   Accepted: 10 ...

  2. POJ 1236 Network Of Schools (强连通分量缩点求出度为0的和入度为0的分量个数)

    Network of Schools A number of schools are connected to a computer network. Agreements have been dev ...

  3. Network of Schools(强连通分量缩点(邻接表&矩阵))

    Description A number of schools are connected to a computer network. Agreements have been developed ...

  4. Network of Schools(强连通分量+缩点) (问添加几个点最少点是所有点连接+添加最少边使图强连通)

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 13801   Accepted: 55 ...

  5. POJ1236 Network of Schools (强连通分量,注意边界)

    A number of schools are connected to a computer network. Agreements have been developed among those ...

  6. POJ 1236 Network of Schools (强连通分量缩点求度数)

    题意: 求一个有向图中: (1)要选几个点才能把的点走遍 (2)要添加多少条边使得整个图强联通 分析: 对于问题1, 我们只要求出缩点后的图有多少个入度为0的scc就好, 因为有入度的scc可以从其他 ...

  7. POJ1236Network of Schools[强连通分量|缩点]

    Network of Schools Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 16571   Accepted: 65 ...

  8. [IOI1996] USACO Section 5.3 Network of Schools(强连通分量)

    nocow上的题解很好. http://www.nocow.cn/index.php/USACO/schlnet 如何求强连通分量呢?对于此题,可以直接先用floyd,然后再判断. --------- ...

  9. POJ1236:Network of Schools(tarjan+缩点)?

    题目: http://poj.org/problem?id=1236 [题意] N(2<N<100)各学校之间有单向的网络,每个学校得到一套软件后,可以通过单向网络向周边的学校传输,问题1 ...

随机推荐

  1. Java线程和多线程(二)——对象中的wait,notify以及notifyAll方法

    Java对象中的wait,notify以及notifyAll方法 在Java的Object类中包含了3个final的方法,这三个方法允许线程来交流资源是否被锁定.这三个方法就是wait(),notif ...

  2. js总结(二):函数、作用域和this

    function Container( properties ) { var objthis = this; for ( var i in properties ) { (function(){ // ...

  3. javascript:与获取鼠标位置有关的属性

    javascript并没有mouse对象,获取鼠标坐标要靠强大的event对象。 我们通过监听document的mousemove,就可以实时获得鼠标位置。 但是!!event中和鼠标相关的属性太多了 ...

  4. https://www.cnblogs.com/freeflying/p/9950374.html

    https://www.cnblogs.com/freeflying/p/9950374.html

  5. Centos6.5安装Oracle11.2.0.4 RAC(完整版)

    环境参数:Linux:Centos6.5 Grid和Oracle:11.2.0.4 一.环境配置 1.配置Node1和Node2两个节点之间的网卡 Node1: [root@rac1 network- ...

  6. 洛谷P1021 邮票面值设计

    题目描述 给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1-MAX之间的每一个邮资值都能得到 ...

  7. bzoj 4736 /uoj274【清华集训2016】温暖会指引我们前行 lct

    [清华集训2016]温暖会指引我们前行 统计 描述 提交 自定义测试 寒冬又一次肆虐了北国大地 无情的北风穿透了人们御寒的衣物 可怜虫们在冬夜中发出无助的哀嚎 “冻死宝宝了!” 这时 远处的天边出现了 ...

  8. bzoj 2802 [Poi2012]Warehouse Store STL

    [Poi2012]Warehouse Store Time Limit: 10 Sec  Memory Limit: 64 MBSec  Special JudgeSubmit: 621  Solve ...

  9. IIS文件存在但报404问题解决

    遇到一个奇怪的问题,在IIS7.5中,一些样式和JS文件存在,但访问就是报404. 根据网上搜索到的解决方法,发现解决不了,不同同样的问题引起的. 网上解决: 1.没有配置合适的MIME信息,通过添加 ...

  10. C++常见函数(备忘录)

    substr(string的成员函数) 语法: basic_string substr( size_type index, size_type num = npos ); substr()返回本字符串 ...