In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12

5 7

1 2

1 3

2 3

2 4

3 4

5 2

7 6

6 3

4 5

6 4

5 6

Sample Output 1:

2 4 4 4 4 4 2

Eulerian

Sample Input 2:

6 10

1 2

1 3

2 3

2 4

3 4

5 2

6 3

4 5

6 4

5 6

Sample Output 2:

2 4 4 4 3 3

Semi-Eulerian

Sample Input 3:

5 8

1 2

2 5

5 4

4 1

1 3

3 2

3 4

5 3

Sample Output 3:

3 3 4 3 3

Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
visited[s]=1;
cnt++;
for(int i=0; i<graph[s].size(); i++)
if(visited[graph[s][i]]==0)
dfs(graph[s][i]);
}
int main(){
int vn, en, even=0;
cin>>vn>>en;
vector<int> degrees(vn+1, 0);
graph.resize(vn+1);
for(int i=0; i<en; i++){
int v1, v2;
cin>>v1>>v2;
graph[v1].push_back(v2);
graph[v2].push_back(v1);
degrees[v1]++;
degrees[v2]++;
}
dfs(1);
for(int i=1; i<=vn; i++){
i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
even=(degrees[i]%2==0?even:even+1);
}
cout<<endl;
if(even==0&&cnt==vn)
cout<<"Eulerian"<<endl;
else if(even==2&&cnt==vn)
cout<<"Semi-Eulerian"<<endl;
else
cout<<"Non-Eulerian"<<endl;
return 0;
}

PAT 1126 Eulerian Path的更多相关文章

  1. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  2. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  6. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1126 Eulerian Path

    题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...

随机推荐

  1. 29. ExtJs - Struts2 整合(1) - 登录页面

    转自:https://yarafa.iteye.com/blog/729197 初学 ExtJS,在此记录下学习过程中的点点滴滴,以备不时只需,也希望能给跟我一样的菜鸟一些帮助,老鸟请忽略.如有不当之 ...

  2. git 详细部署及其应用

    第1章 版本控制系统 自动生成备份.随时回滚.知道改动的地方. 1.1 svn和git的区别 1.1.1 svn 集中式的版本控制系统,只有一个中央数据仓库,如果中央数据库仓库挂了或者不可访问,所有的 ...

  3. 思维+multiset ZOJ Monthly, July 2015 - H Twelves Monkeys

    题目传送门 /* 题意:n个时刻点,m次时光穿梭,告诉的起点和终点,q次询问,每次询问t时刻t之前有多少时刻点是可以通过两种不同的路径到达 思维:对于当前p时间,从现在到未来穿越到过去的是有效的值,排 ...

  4. mysqladmin(MySQL管理工具)

    mysqladmin是一个执行管理操作的客户端程序.它可以用来检查服务器的配置和当前状态.创建和删除数据库等. 1.mysqladmin命令的语法: shell > mysqladmin [op ...

  5. 《编写可维护的Javascript》学习总结

    第一部分 一.基本规范 1.缩进:一般以四个空格为一个缩进. 2.语句结尾:最好加上分号,因为虽然“自动分号插入(ASI)”机制在没有分号的位置会插入分号,但是ASI规则复杂而且会有特殊情况发生 // ...

  6. Java 8 (8) 默认方法

    传统上,Java程序的接口是将相关方法按照预定组合到一起的方式.实现接口的类必须为接口中定义的方法提供一个实现,或者从父类中集成它的实现.但是,一旦类库的设计者需要更新接口,向接口中加入新的方法时候, ...

  7. re.S解析

    转自:https://www.cnblogs.com/xieqiankun/p/re-sinpython.html 在Python的正则表达式中,有一个参数为re.S.它表示“.”(不包含外侧双引号, ...

  8. swift 工作日志

    开发问题汇总: tableview.register(CEImpWalletHomeCell.self, forCellReuseIdentifier: "cell") var c ...

  9. 数据分片存储,mycat服务器

    关闭防火墙和selinux,配置yum源配置21 .22 数据库(这里以21为例)[root@host21 ~]# tar -xf mysql-5.7.17.tar[root@host21 ~]# y ...

  10. Django基础核心技术之Model模型的介绍与设计

    Django基础核心技术之Model模型的介绍与设计原创: Yunbo Shi Python Web与Django开发 2018-05-03Django网络应用开发的5项基础核心技术包括模型(Mode ...