In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12

5 7

1 2

1 3

2 3

2 4

3 4

5 2

7 6

6 3

4 5

6 4

5 6

Sample Output 1:

2 4 4 4 4 4 2

Eulerian

Sample Input 2:

6 10

1 2

1 3

2 3

2 4

3 4

5 2

6 3

4 5

6 4

5 6

Sample Output 2:

2 4 4 4 3 3

Semi-Eulerian

Sample Input 3:

5 8

1 2

2 5

5 4

4 1

1 3

3 2

3 4

5 3

Sample Output 3:

3 3 4 3 3

Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
visited[s]=1;
cnt++;
for(int i=0; i<graph[s].size(); i++)
if(visited[graph[s][i]]==0)
dfs(graph[s][i]);
}
int main(){
int vn, en, even=0;
cin>>vn>>en;
vector<int> degrees(vn+1, 0);
graph.resize(vn+1);
for(int i=0; i<en; i++){
int v1, v2;
cin>>v1>>v2;
graph[v1].push_back(v2);
graph[v2].push_back(v1);
degrees[v1]++;
degrees[v2]++;
}
dfs(1);
for(int i=1; i<=vn; i++){
i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
even=(degrees[i]%2==0?even:even+1);
}
cout<<endl;
if(even==0&&cnt==vn)
cout<<"Eulerian"<<endl;
else if(even==2&&cnt==vn)
cout<<"Semi-Eulerian"<<endl;
else
cout<<"Non-Eulerian"<<endl;
return 0;
}

PAT 1126 Eulerian Path的更多相关文章

  1. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  2. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  6. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1126 Eulerian Path

    题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...

随机推荐

  1. 开发第一个Template

    TEMPLATE的静态变量,当时我们一句话就带过了.TEMPLATE静态变量下面有好几个键值对,把"BACKEND"后面的值改成我们想要用的模板引擎就可以了.我们项目使用Djang ...

  2. $割点割顶tarjan$

    原题 #include <bits/stdc++.h> using namespace std; typedef long long LL; inline LL read () { LL ...

  3. Ubuntu 16.04 安装OpenSSH7.4

      前几天突然收到接到网安总队下发通知说我们在aws里面的服务器存在重大漏洞及安全隐患.必须在规定时间内修改.我们收到邮件打开Excel发现这些问题 是由于OpenSSH版本太低导致的.于是便安排紧急 ...

  4. Linux学习笔记之Linux相关知识

    [想成为某一方面的大神,没有捷径可走,只能不断的记录.练习.总结.coding……] notes:主要从网上摘录了一些关于Linux的历史以及一些相关内容,以便对Linux系统有一定的了解.这不但可以 ...

  5. 关于ListView的注意点

    解决ListView的一些常见问题: 1.listview在拖动的时候背景图片消失变成黑色背景,等到拖动完毕我们自己的背景图片才显示出来 解决:在XML中加入 android:scrollingCac ...

  6. 思维题 HDOJ 5288 OO’s Sequence

    题目传送门 /* 定义两个数组,l[i]和r[i]表示第i个数左侧右侧接近它且值是a[i]因子的位置, 第i个数被选择后贡献的值是(r[i]-i)*(i-l[i]),每个数都枚举它的因子,更新l[i] ...

  7. Jenkins+ant+jmeter接口自动化

    1.Jenkins新建slave节点 2.Jenkins新建job,配置job,关联到slave, 3.执行构建 build文件如下 <?xml version="1.0" ...

  8. re.S解析

    转自:https://www.cnblogs.com/xieqiankun/p/re-sinpython.html 在Python的正则表达式中,有一个参数为re.S.它表示“.”(不包含外侧双引号, ...

  9. fragment间的数据传递

    今天我将要讲的是fragment间的数据是如何进行传递的.这里我将举个简单的例子. 首先要有个MainActivity,它托管了MainFragment,而MainFragment又托管了DatePi ...

  10. SQL SERVER 执行计划各字段注释

    SET SHOWPLAN_ALL使 Microsoft® SQL Server™ 不执行 Transact-SQL 语句.相反,SQL Server 返回有关语句执行方式和语句预计所需资源的详细信息. ...