In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similarly, an Eulerian circuit is an Eulerian path which starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Konigsberg problem in 1736. It has been proven that connected graphs with all vertices of even degree have an Eulerian circuit, and such graphs are called Eulerian. If there are exactly two vertices of odd degree, all Eulerian paths start at one of them and end at the other. A graph that has an Eulerian path but not an Eulerian circuit is called semi-Eulerian. (Cited from https://en.wikipedia.org/wiki/Eulerian_path)

Given an undirected graph, you are supposed to tell if it is Eulerian, semi-Eulerian, or non-Eulerian.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 2 numbers N (≤ 500), and M, which are the total number of vertices, and the number of edges, respectively. Then M lines follow, each describes an edge by giving the two ends of the edge (the vertices are numbered from 1 to N).

Output Specification:

For each test case, first print in a line the degrees of the vertices in ascending order of their indices. Then in the next line print your conclusion about the graph -- either Eulerian, Semi-Eulerian, or Non-Eulerian. Note that all the numbers in the first line must be separated by exactly 1 space, and there must be no extra space at the beginning or the end of the line.

Sample Input 1:

7 12

5 7

1 2

1 3

2 3

2 4

3 4

5 2

7 6

6 3

4 5

6 4

5 6

Sample Output 1:

2 4 4 4 4 4 2

Eulerian

Sample Input 2:

6 10

1 2

1 3

2 3

2 4

3 4

5 2

6 3

4 5

6 4

5 6

Sample Output 2:

2 4 4 4 3 3

Semi-Eulerian

Sample Input 3:

5 8

1 2

2 5

5 4

4 1

1 3

3 2

3 4

5 3

Sample Output 3:

3 3 4 3 3

Non-Eulerian

#include<iostream> //注意检查连通性
#include<vector>
using namespace std;
int cnt=0;
vector<vector<int>> graph;
vector<int> visited(501, 0);
void dfs(int s){
visited[s]=1;
cnt++;
for(int i=0; i<graph[s].size(); i++)
if(visited[graph[s][i]]==0)
dfs(graph[s][i]);
}
int main(){
int vn, en, even=0;
cin>>vn>>en;
vector<int> degrees(vn+1, 0);
graph.resize(vn+1);
for(int i=0; i<en; i++){
int v1, v2;
cin>>v1>>v2;
graph[v1].push_back(v2);
graph[v2].push_back(v1);
degrees[v1]++;
degrees[v2]++;
}
dfs(1);
for(int i=1; i<=vn; i++){
i==1?cout<<degrees[i]:cout<<" "<<degrees[i];
even=(degrees[i]%2==0?even:even+1);
}
cout<<endl;
if(even==0&&cnt==vn)
cout<<"Eulerian"<<endl;
else if(even==2&&cnt==vn)
cout<<"Semi-Eulerian"<<endl;
else
cout<<"Non-Eulerian"<<endl;
return 0;
}

PAT 1126 Eulerian Path的更多相关文章

  1. PAT 1126 Eulerian Path[欧拉路][比较]

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  2. PAT甲级 1126. Eulerian Path (25)

    1126. Eulerian Path (25) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue In grap ...

  3. PAT甲级——1126 Eulerian Path

    我是先在CSDN上发布的这篇文章:https://blog.csdn.net/weixin_44385565/article/details/89155050 1126 Eulerian Path ( ...

  4. 1126 Eulerian Path (25 分)

    1126 Eulerian Path (25 分) In graph theory, an Eulerian path is a path in a graph which visits every ...

  5. PAT 甲级 1126 Eulerian Path

    https://pintia.cn/problem-sets/994805342720868352/problems/994805349851185152 In graph theory, an Eu ...

  6. PAT A1126 Eulerian Path (25 分)——连通图,入度

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  7. 1126. Eulerian Path (25)

    In graph theory, an Eulerian path is a path in a graph which visits every edge exactly once. Similar ...

  8. PAT甲题题解-1126. Eulerian Path (25)-欧拉回路+并查集判断图的连通性

    题目已经告诉如何判断欧拉回路了,剩下的有一点要注意,可能图本身并不连通. 所以这里用并查集来判断图的联通性. #include <iostream> #include <cstdio ...

  9. 1126 Eulerian Path

    题意:若图是连通图,且所有结点的度均为偶数,则称为Eulerian:若有且仅有两个结点的度为奇数,则称为semi-Eulerian.现给出一个图,要我们判断其是否为Eulerian,semi-Eule ...

随机推荐

  1. 用nginx搭建基于rtmp或者http的flv、mp4流媒体服务器

    http://itindex.NET/detail/48702-nginx-rtmp-http 一.流媒体播放方式 1.  HTTP方式 这种方式要下载FLV视频文件到本地播放,一旦FLV视频文件下载 ...

  2. Google C++编程规范 – 第十九条 -《前置声明》

    转自:http://roclinux.cn/?p=3285 本原创文章属于<Linux大棚>博客. 博客地址为http://roclinux.cn. 文章作者为roc wu == [规范] ...

  3. C++中正确使用PRId64 (转载)

    转自:http://blog.csdn.net/win_lin/article/details/7912693 例子参考高性能流媒体服务器SRS:https://github.com/winlinvi ...

  4. 牛客网NOIP赛前集训营 提高组(第七场)

    中国式家长 2 链接:https://www.nowcoder.com/acm/contest/179/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K, ...

  5. JavaScript--DOM访问子结点childNodes

    访问子结点childNodes 访问选定元素节点下的所有子节点的列表,返回的值可以看作是一个数组,他具有length属性. 语法: elementNode.childNodes 注意: 如果选定的节点 ...

  6. Windows及Linux环境下Tomcat的JVM参数调优

    Windows环境: catalina.bat文件修改 set JAVA_OPTS=-server -Xms4096m -Xmx4096m -XX:PermSize=512m -XX:MaxPermS ...

  7. rman 问题

    1. RMAN Repeatedly Fail To Backup Archivelogs with RMAN-20242 Cause: There is a mis-match between th ...

  8. 365 Water and Jug Problem 水壶问题

    有两个容量分别为 x升 和 y升 的水壶以及无限多的水.请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水.你允许:    装满任 ...

  9. SQL在一张表中根据父ID获取所有的子ID

    with a as ( select id,name,parentid from categories where id=53 union all select x.id,x.name,x.paren ...

  10. jQuery伪分页效果

    如图,我们首先分析在一个页面存放4条内容,其余的超出隐藏(因为这里没有后台数据,所以我们把内容‘写死’),然后就是下面两个按钮(这里我们不用button,因为button有自带的提交功能),然后我们可 ...