http://poj.org/problem?id=2728

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 27191   Accepted: 7557

Description

David the Great has just become the king of a desert country. To win the respect of his people, he decided to build channels all over his country to bring water to every village. Villages which are connected to his capital village will be watered. As the dominate ruler and the symbol of wisdom in the country, he needs to build the channels in a most elegant way.

After days of study, he finally figured his plan out. He wanted the average cost of each mile of the channels to be minimized. In other words, the ratio of the overall cost of the channels to the total length must be minimized. He just needs to build the necessary channels to bring water to all the villages, which means there will be only one way to connect each village to the capital.

His engineers surveyed the country and recorded the position and altitude of each village. All the channels must go straight between two villages and be built horizontally. Since every two villages are at different altitudes, they concluded that each channel between two villages needed a vertical water lifter, which can lift water up or let water flow down. The length of the channel is the horizontal distance between the two villages. The cost of the channel is the height of the lifter. You should notice that each village is at a different altitude, and different channels can't share a lifter. Channels can intersect safely and no three villages are on the same line.

As King David's prime scientist and programmer, you are asked to find out the best solution to build the channels.

Input

There are several test cases. Each test case starts with a line containing a number N (2 <= N <= 1000), which is the number of villages. Each of the following N lines contains three integers, x, y and z (0 <= x, y < 10000, 0 <= z < 10000000). (x, y) is the position of the village and z is the altitude. The first village is the capital. A test case with N = 0 ends the input, and should not be processed.

Output

For each test case, output one line containing a decimal number, which is the minimum ratio of overall cost of the channels to the total length. This number should be rounded three digits after the decimal point.

Sample Input

4
0 0 0
0 1 1
1 1 2
1 0 3
0

Sample Output

1.000

Source

 
 
最优比例生成树,对于每条边有两个权值(a,b),求得ans=min( suma / sumb )
二分一个ans,判断 ai-bi*ans与0 的关系
 
 #include <algorithm>
#include <cstdio>
#include <cmath> #define max(a,b) (a>b?a:b)
#define min(a,b) (a<b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} const double eps(1e-);
const int N();
struct Node {
int x,y,h;
}city[N];
int n; double L,R,Mid,ans;
struct Edge {
int u,v;
double w;
Edge(int u=,int v=,double w=0.0):u(u),v(v),w(w){}
bool operator < (const Edge&x)const { return w<x.w; }
}road[N*N]; inline double Dis(Node a,Node b)
{
double x=1.0*(a.x-b.x)*(a.x-b.x);
double y=1.0*(a.y-b.y)*(a.y-b.y);
return abs(a.h-b.h)-Mid*sqrt(x+y);
} int fa[N];
int find(int x) { return x==fa[x]?x:fa[x]=find(fa[x]); } inline bool check()
{
double ret=; int cnt=,m=;
for(int i=; i<=n; fa[i]=i++)
for(int j=; j<=n; ++j)
if(i!=j) road[++m]=Edge(i,j,Dis(city[i],city[j]));
std::sort(road+,road+m+);
for(int fx,fy,i=; i<=m; ++i)
{
fx=find(road[i].u),
fy=find(road[i].v);
if(fx==fy) continue;
fa[fx]=fy; ret+=road[i].w;
if(++cnt==n-) return ret<;
}
} int Presist()
{
for(; scanf("%d",&n)&&n; )
{
for(int i=; i<=n; ++i)
{
read(city[i].x),
read(city[i].y),
read(city[i].h),
R=max(R,1.0*city[i].h);
}
for(L=; L+eps<R; )
{
Mid=(L+R)/2.0;
if(check()) R=Mid;
else L=Mid;
}
printf("%.3lf\n",R);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

T掉的Kruskal

 #include <algorithm>
#include <cstring>
#include <cstdio>
#include <cmath> #define max(a,b) (a>b?a:b) inline void read(int &x)
{
x=; register char ch=getchar();
for(; ch>''||ch<''; ) ch=getchar();
for(; ch>=''&&ch<=''; ch=getchar()) x=x*+ch-'';
} const double INF(10000000.0);
const double eps(1e-);
const int N(); double h[N][N],d[N][N];
struct Node {
int x,y,h;
}city[N];
int n; double L,R,Mid,ans,dis[N];
bool vis[N]; inline double Dis(Node a,Node b)
{
double x=1.0*(a.x-b.x)*(a.x-b.x);
double y=1.0*(a.y-b.y)*(a.y-b.y);
return (double)sqrt(x+y);
} inline bool check()
{
for(int i=; i<=n; ++i) vis[i]=;
for(int i=; i<=n; ++i) dis[i]=h[][i]-Mid*d[][i];
double ret=0.0,minn; vis[]=;
for(int i=,u; i<=n; ++i)
{
minn=INF;
for(int j=; j<=n; ++j)
if(!vis[j]&&minn>dis[j]) minn=dis[u=j];
if(minn==INF) break;
ret+=minn; vis[u]=;
for(int v=; v<=n; ++v)
if(!vis[v]&&dis[v]>h[u][v]-Mid*d[u][v])
dis[v]=h[u][v]-Mid*d[u][v];
}
return ret<=;
} int Presist()
{
for(; scanf("%d",&n)&&n; )
{
for(int i=; i<=n; ++i)
{
read(city[i].x),
read(city[i].y),
read(city[i].h),
R=max(R,city[i].h);
}
for(int i=; i<=n; ++i)
for(int j=i+; j<=n; ++j)
{
d[i][j]=d[j][i]=Dis(city[i],city[j]);
h[i][j]=h[j][i]=abs(city[i].h-city[j].h)*1.0;
}
for(L=; L+eps<R; )
{
Mid=(L+R)/2.0;
if(check()) R=Mid;
else L=Mid;
}
printf("%.3lf\n",R);
}
return ;
} int Aptal=Presist();
int main(int argc,char**argv){;}

POJ——T 2728 Desert King的更多相关文章

  1. poj 2728 Desert King (最小比例生成树)

    http://poj.org/problem?id=2728 Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissio ...

  2. poj 2728 Desert King (最优比率生成树)

    Desert King http://poj.org/problem?id=2728 Time Limit: 3000MS   Memory Limit: 65536K       Descripti ...

  3. POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 25310   Accepted: 7022 Desc ...

  4. POJ 2728 Desert King 最优比率生成树

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 20978   Accepted: 5898 [Des ...

  5. POJ 2728 Desert King (01分数规划)

    Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions:29775   Accepted: 8192 Descr ...

  6. POJ 2728 Desert King

    Description David the Great has just become the king of a desert country. To win the respect of his ...

  7. POJ 2728 Desert King(最优比率生成树 01分数规划)

    http://poj.org/problem?id=2728 题意: 在这么一个图中求一棵生成树,这棵树的单位长度的花费最小是多少? 思路: 最优比率生成树,也就是01分数规划,二分答案即可,题目很简 ...

  8. POJ 2728 Desert King | 01分数规划

    题目: http://poj.org/problem?id=2728 题解: 二分比率,然后每条边边权变成w-mid*dis,用prim跑最小生成树就行 #include<cstdio> ...

  9. 【POJ 2728 Desert King】

    Time Limit: 3000MSMemory Limit: 65536K Total Submissions: 27109Accepted: 7527 Description David the ...

随机推荐

  1. shell编写的多服务器自动互信脚本(安装ceph)

    相信大家都使用过分布式存储,而在分布式存储中较为出色的非ceph莫属了,但是这里就不深入聊ceph啦,我们只是聊聊安装ceph时遇到的问题. ceph需要多台主机进行ssh互信.三台还能忍受,但是当超 ...

  2. java 线程池第一篇 之 ThreadPoolExcutor

    一:什么是线程池? java 线程池是将大量的线程集中管理的类,包括对线程的创建,资源的管理,线程生命周期的管理.当系统中存在大量的异步任务的时候就考虑使用java线程池管理所有的线程.减少系统资源的 ...

  3. Node.js——优先从缓存加载

    main中执行require操作,目的是获取接口对象,所以多次引用b,并不会重复执行模块内部的输入输出,因为缓存中已经存在

  4. 关于mapState和mapMutations和mapGetters 和mapActions辅助函数的用法及作用(四)-----mapActions

    介绍mapActions辅助函数: Action提交的是Mutation,不能够直接修改state中的状态,而Mutations是可以直接修改state中状态的:Action是支持异步操作的,而Mut ...

  5. vue2.0自定义事件

    我们知道父组件是使用props传递数据给子组件,如果子组件要把数据传递回去,怎么办? 那就是要自定义事件!使用v-on绑定自定义事件 每个Vue实例都实现了事件接口(Events interface) ...

  6. 面向对象编程(OOP)基础知识(一)

    Java是一个支持并发.基于类和面向对象的计算机编程语言. 下面列出了面向对象软件开发的优点: 1.代码开发模块化,更易维护和修改. 2.代码复用. 3.增强代码的可靠性和灵活性. 4.增加代码的可理 ...

  7. PHP会话控制考察点

    为什么要使用会话控制技术 HTTP协议是无状态的,也就是说HTTP没有一个内建的机制来维护两个事务之间的状态.当一个用户完成一个请求发起第二个请求的时候,服务器无法知道这次请求是来自于上一次的客户.而 ...

  8. C#斐波那契数列递归算法

    public static int Foo(int i)        {            if (i < 3)            {                return 1; ...

  9. 分组密码_计数器(CTR)模式_原理及java实现

    一.原理: CTR模式是一种通过将逐次累加的计数器进行加密来生成密钥流的流密码,在CTR模式中,每个分组对应一个逐次累加的计数器,并通过对计数器进行加密来生成密钥流.最终的密文分组是通过将计数器加密得 ...

  10. xcode 通配搜索

    class \w*<\w*> extension \w*: \w* \{\} 搜索所有泛型类.