BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分

Description

要完成一个由s个子项目组成的项目,给b(b>=s)个部门分配,从而把b个部门分成s个组。分组完成后,每一组的任
意两个点之间都要传递信息。假设在(i,j)两个点间传送信息,要先把信息加密,然后快递员从i出发到总部,再加
密,在到j点。出于安全原因,每次只能携带一条消息。现在给出了道路网络、各个部门和总部的位置,请输出快
递员要走的最小总距离。

Input

第一行包含四个整数n,b,s,r。n(2<=n<=5000)代表路口数,b(1<=b<=n-1)是部门数,s(1<=s<=b)是子项目数
r(1<=r<=50000)是道路数。路口标号为1~n,部门在路口1~b,总部在路口b+1。
接下来r行每行三个整数u,v,l,描述一条从u到v长度为l(0<=l<=10000)的双向边。保证没有重边,保证图强连通。

Output

输出快递员要走的最小总距离。

Sample Input

5 4 3 8
1 5 15
5 1 15
2 5 2
5 2 3
3 5 1
5 3 1
4 5 2
5 4 0

Sample Output

4

先处理出dis1[i]表示i到b+1的最短路和dis2[i]表示b+1到i的最短路。
然后设a[i]=dis1[i]+dis2[i]。
由于每个集合内的点都要跑size-1个来回。
答案就是每个点的权值乘上size-1之和。这个-1可以放在后面一起算。
按权值排个序,之后选连续一段的一定最优。
否则:最优解中一定有两个集合S,T。设mx为S中最大的数,mn为S中最小的数。
那么一定在T中存在x使得mn<x<mx。
如果siz[S]>siz[T],那么把x和mx交换一定更优。
否则把x和mn交换一定不会变差。
转化成序列上的问题。
先带权二分把K弄没。
F[i]=F[j]+(i-j)*(s[i]-s[j])
然后因为x*lx+y*lx>(x-d)*(lx-p)+(y+d)*(ly-p)。
DP式子满足决策单调性。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <ext/pb_ds/priority_queue.hpp>
using namespace std;
using namespace __gnu_pbds;
#define N 5050
#define M 50050
typedef long long ll;
__attribute__((optimize("-O3")))inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
__attribute__((optimize("-O3")))int rd() {
int x=0; char ch=nc();
while(ch<'0'||ch>'9') ch=nc();
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=nc();
return x;
}
int head[N],to[M],nxt[M],val[M],cnt,dis[N],a[N],vis[N],xx[M],yy[M],zz[M],n,B,S,m,g[N];
ll s[N],f[N],C;
__gnu_pbds::priority_queue<pair<int,int> >q;
__attribute__((optimize("-O3")))inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w;
}
__attribute__((optimize("-O3")))void dij() {
memset(dis,0x3f,sizeof(dis));
dis[B+1]=0;
memset(vis,0,sizeof(vis));
q.push(make_pair(0,B+1));
while(!q.empty()) {
int x=q.top().second,i; q.pop();
if(vis[x]) continue;
vis[x]=1; a[x]+=dis[x];
for(i=head[x];i;i=nxt[i]) {
if(dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
q.push(make_pair(-dis[to[i]],to[i]));
}
}
}
}
struct A {
int l,r,p;
}Q[N];
#define Y(j,i) (f[j]+(i-j)*(s[i]-s[j])+C)
// ll Y(int j,int i) {
// return f[j]+(i-j)*(s[i]-s[j])+C;
// }
__attribute__((optimize("-O3")))int find(const A &a,int x) {
int l=a.l,r=a.r+1;
while(l<r) {
int mid=(l+r)>>1;
if(Y(x,mid)>Y(a.p,mid)) l=mid+1;
else r=mid;
}
return l;
}
__attribute__((optimize("-O3")))void check() {
int i,l=0,r=0;
Q[r++]=(A){0,n,0};
for(i=1;i<=n;i++) {
while(l<r&&Q[l].r<i) l++;
f[i]=Y(Q[l].p,i); g[i]=g[Q[l].p]+1;
if(Y(i,n)<=Y(Q[r-1].p,n)) {
while(l<r&&Y(i,Q[r-1].l)<=Y(Q[r-1].p,Q[r-1].l)) r--;
if(l==r) Q[r++]=(A){i,n,i};
else {
int x=find(Q[r-1],i);
Q[r-1].r=x-1;
Q[r++]=(A){x,n,i};
}
}
}
}
__attribute__((optimize("-O3")))int main() {
n=rd(); B=rd(); S=rd(); m=rd();
register int i;
for(i=1;i<=m;i++) {
xx[i]=rd(); yy[i]=rd(); zz[i]=rd();
add(xx[i],yy[i],zz[i]);
}
dij();
memset(head,0,sizeof(head)); cnt=0;
for(i=1;i<=m;i++) {
add(yy[i],xx[i],zz[i]);
}
dij();
n=B;
sort(a+1,a+n+1);
for(i=1;i<=n;i++) s[i]=s[i-1]+a[i];
ll l=0,r=1ll<<48;
while(l<r) {
C=(l+r)>>1;
check();
if(g[n]>S) l=C+1;
else r=C;
}
l--; C=l; check();
printf("%lld\n",f[n]-S*l-s[n]);
}

BZOJ_4609_[Wf2016]Branch Assignment_决策单调性+带权二分的更多相关文章

  1. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  2. DP的各种优化(动态规划,决策单调性,斜率优化,带权二分,单调栈,单调队列)

    前缀和优化 当DP过程中需要反复从一个求和式转移的话,可以先把它预处理一下.运算一般都要满足可减性. 比较naive就不展开了. 题目 [Todo]洛谷P2513 [HAOI2009]逆序对数列 [D ...

  3. 洛谷P2619 [国家集训队2]Tree I(带权二分,Kruscal,归并排序)

    洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(nee ...

  4. 洛谷 4383 [八省联考2018]林克卡特树lct——树形DP+带权二分

    题目:https://www.luogu.org/problemnew/show/P4383 关于带权二分:https://www.cnblogs.com/flashhu/p/9480669.html ...

  5. 6.13校内互测 (DP 带权二分 斜率优化)

    丘中有麻plant 改自这儿,by ZBQ. 还有隐藏的一页不放了.. 直接走下去的话,如果开始时间确定那么到每个点的时间确定,把time减去dis就可以去掉路程的影响了. 这样对于减去d后的t,如果 ...

  6. 洛谷.4383.[八省联考2018]林克卡特树lct(树形DP 带权二分)

    题目链接 \(Description\) 给定一棵边带权的树.求删掉K条边.再连上K条权为0的边后,新树的最大直径. \(n,K\leq3\times10^5\). \(Solution\) 题目可以 ...

  7. Codeforces.739E.Gosha is hunting(DP 带权二分)

    题目链接 \(Description\) 有\(n\)只精灵,两种精灵球(高级和低级),每种球能捕捉到第\(i\)只精灵的概率已知.求用\(A\)个低级球和\(B\)个高级球能捕捉到精灵数的最大期望. ...

  8. P4383 [八省联考2018]林克卡特树lct 树形DP+凸优化/带权二分

    $ \color{#0066ff}{ 题目描述 }$ 小L 最近沉迷于塞尔达传说:荒野之息(The Legend of Zelda: Breath of The Wild)无法自拔,他尤其喜欢游戏中的 ...

  9. 洛谷.2619.[国家集训队2]Tree I(带权二分 Kruskal)

    题目链接 \(Description\) 给定一个无向带权连通图,每条边是黑色或白色.求一棵最小权的恰好有K条白边的生成树. \(Solution\) Kruskal是选取最小的n-1条边.而白边数有 ...

随机推荐

  1. #ifdef #endif #if #endif

    c语言里所有以#开头的都是预编译指令,就是在正式编译之前,让编译器做一些预处理的工作. #ifdef DEBUG printf("variable x has value = %d\n&qu ...

  2. CODEVS_2800 送外卖 状态压缩+动态规划

    原题链接:http://codevs.cn/problem/2800/ 题目描述 Description 有一个送外卖的,他手上有n份订单,他要把n份东西,分别送达n个不同的客户的手上.n个不同的客户 ...

  3. bzoj 5216: [Lydsy2017省队十连测]公路建设

    5216: [Lydsy2017省队十连测]公路建设 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 66  Solved: 37[Submit][St ...

  4. 2018.11.6 PION 模拟赛

    期望:100 + 40 + 50 = 190 实际:60 + 10 + 50 = 120 考得好炸啊!!T1数组开小了炸掉40,T2用 int 读入 long long ,int存储 long lon ...

  5. Docker 基础底层架构浅谈

    docker学习过程中,免不了需要学习下docker的底层技术,今天我们来记录下docker的底层架构吧! 从上图我们可以看到,docker依赖于linux内核的三个基本技术:namespaces.C ...

  6. 如何通过SQL注入获取服务器本地文件

    写在前面的话 SQL注入可以称得上是最臭名昭著的安全漏洞了,而SQL注入漏洞也已经给整个网络世界造成了巨大的破坏.针对SQL漏洞,研究人员也已经开发出了多种不同的利用技术来实施攻击,包括非法访问存储在 ...

  7. 33.JAVA编程思想——JAVA IO File类

    33.JAVA编程思想--JAVA IO File类 RandomAccessFile用于包括了已知长度记录的文件.以便我们能用 seek()从一条记录移至还有一条:然后读取或改动那些记录. 各记录的 ...

  8. [转]gzip,bzip2,tar,zip命令使用方法详解

    原文:http://blog.chinaunix.net/uid-20779720-id-2547669.html 1 gzipgzip(1) 是GNU的压缩程序.它只对单个文件进行压缩.基本用法如下 ...

  9. Android6.0权限管理以及使用权限该注意的地方

    Android 6.0 Marshmallow首次增加了执行时权限管理,这对用户来说,能够更好的了解.控 制 app 涉及到的权限.然而对开发人员来说却是一件比較蛋疼的事情.须要兼容适配,并保证程序功 ...

  10. 《ASP.NET》数据绑定—DataList实践篇

    上篇文章大概讲了DataList的一些基础知识,掌握这些知识在将来的应用中起到非常大的作用,如今我们就開始讲上篇文章中说的基础知识做一个小样例. 首先,我机子的数据库中有一张person表.例如以下图 ...