最优灌溉_最小生成树Kruskal
问题描述
雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来引水灌溉。
为了灌溉,雷雷需要建立一些水渠,以连接水井和麦田,雷雷也可以利用部分麦田作为“中转站”,利用水渠连接不同的麦田,这样只要一片麦田能被灌溉,则与其连接的麦田也能被灌溉。
现在雷雷知道哪些麦田之间可以建设水渠和建设每个水渠所需要的费用(注意不是所有麦田之间都可以建立水渠)。请问灌溉所有麦田最少需要多少费用来修建水渠。
输入格式
输入的第一行包含两个正整数n, m,分别表示麦田的片数和雷雷可以建立的水渠的数量。麦田使用1, 2, 3, ……依次标号。
接下来m行,每行包含三个整数ai,
bi, ci,表示第ai片麦田与第bi片麦田之间可以建立一条水渠,所需要的费用为ci。
输出格式
输出一行,包含一个整数,表示灌溉所有麦田所需要的最小费用。
样例输入
4 4
1 2 1
2 3 4
2 4 2
3 4 3
样例输出
6
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector> using namespace std; const int maxn = + ;
const int maxe = + ;
const int inf = 0x3f3f3f3f; struct Edge{
int u, v, cost;
Edge(){}
Edge(int u, int v, int c) :u(u), v(v), cost(c){}
// bool operator < (const Edge& rhs){
// return cost < rhs.cost;
// }
}; int n, m;
int p[maxn];
Edge e[maxe]; int find(int x){ return x == p[x] ? x : p[x] = find(p[x]); }
int cmp(const Edge& e1, const Edge& e2){ return e1.cost < e2.cost; } void Kruskal(){
for (int i = ; i <= n; ++i) p[i] = i;
sort(e, e + m, cmp); int ans = ;
for (int i = ; i < m; ++i){
int u = find(e[i].u), v = find(e[i].v), w = e[i].cost;
if (u != v){
p[u] = v;
ans += w;
}
} cout << ans << endl;
} int main(){
cin >> n >> m;
for (int i = ; i < m; ++i){
int u, v, w;
cin >> u >> v >> w;
e[i] = Edge(u, v, w);
}
Kruskal();
return ;
}
最优灌溉_最小生成树Kruskal的更多相关文章
- CCF系列之最优灌溉(201412-4)
试题编号:201412-4试题名称:最优灌溉时间限制: 1.0s内存限制: 256.0MB 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来 ...
- CCF CSP 201412-4 最优灌溉
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201412-4 最优灌溉 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖 ...
- CCF 201412-4 最优灌溉
问题描述 试题编号: 201412-4 试题名称: 最优灌溉 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很 ...
- CCF模拟题 最优灌溉
最优灌溉 时间限制: 1.0s 内存限制: 256.0MB 问题描述 雷雷承包了很多片麦田,为了灌溉这些麦田,雷雷在第一个麦田挖了一口很深的水井,所有的麦田都从这口井来引水灌溉. 为了灌溉,雷雷需 ...
- 【转】最小生成树——Kruskal算法
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法 ...
- 模板——最小生成树kruskal算法+并查集数据结构
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每 ...
- 最小生成树——Kruskal与Prim算法
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个 ...
- 【CCF】最优灌溉 最小生成树
[AC] #include<iostream> #include<cstdio> #include<string> #include<cstring> ...
- 最小生成树---Kruskal/Prime算法
1.Kruskal算法 图的存贮采用边集数组或邻接矩阵,权值相等的边在数组中排列次序可任意,边较多的不很实用,浪费时间,适合稀疏图. 方法:将图中边按其权值由小到大的次序顺序选取,若选边后不 ...
随机推荐
- JAVA获取前一个月的第一天和最后一天
package com.date; import java.text.SimpleDateFormat; import java.util.Calendar; /** * 默认显示前一个月的第一天和最 ...
- 如何用Python批量发现互联网“开放”摄像头
现在无论家用还是公司使用摄像头越来越多,但是安全性又如何呐?今天我来说说几款比较常用的摄像头,并且使用python如何批量检查弱口令. 第一个“海康威视”: 前段时间爆出海康威视的摄像头存在默认弱口令 ...
- 【转】构造HTTP请求Header实现“伪造来源IP”
构造 HTTP请求 Header 实现“伪造来源 IP ” 在阅读本文前,大家要有一个概念,在实现正常的TCP/IP 双方通信情况下,是无法伪造来源 IP 的,也就是说,在 TCP/IP 协议中,可以 ...
- python各种类型转换
python各种类型转换 学习了:https://blog.csdn.net/shanliangliuxing/article/details/7920400 https://blog.csdn.ne ...
- html+vlc 播放多视频
html代码 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www. ...
- jQuery Ajax Post Data Example
http://www.formget.com/jquery-post-data/ jQuery Ajax Post Data Example Fugo Of FormGet jQuery $.post ...
- FLEX接收外部参数 .
FLEX参数传递与FLASH有点不同 login..swf?name=aa&password=bb Flex上是这样接收参数的 myname=mx.core.Application.appli ...
- 数据结构与算法之贪心算法 C++实现
1.基本思路:从问题的某一个初始解触发逐步逼近给定的目标,以尽可能快的求得更好的解. 当达到算法中某一步不能再继续前进时.就停止算法,给出近似值.也就是说贪心算法并不从总体最优考虑,它所作出的选择仅仅 ...
- Django 之ORM操作
1.什么是ORM? 全称关系对象映射Object Relational Mapping(简称ORM),是通过描述面向对象与数据库之间的对应的元数据,将对象持久化的更新到数据库中. 有了ORM,就不需要 ...
- 中断线程Interrupt()
以下是参考<<Java多线程模式>>的 1. sleep() & interrupt() 线程A正在使用sleep()暂停着: Thread.sleep(100000) ...