Alice is given a list of integers by Bob and is asked to generate a new list where each element in the new list is the sum of some other integers in the original list. The task is slightly more involved, as Bob also asks Alice to repeat this several times before giving him the result. Help Alice automate her task. Input The first line of the input is t (1 ≤ t ≤ 10), the number of cases to follow. Each case is in the following format: n r a0 a1 . . . an−1 x0 b0,0 b0,1 . . . b0,x0−1 x1 b1,0 b1,1 . . . b1,x1−1 . . . xn−1 bn−1,0 bn−1,1 . . . bn−1,xn−1−1 Each case begins with the integer n (1 ≤ n ≤ 50), which is the number of elements in the list of integers that Alice is given. The integer r (1 ≤ r ≤ 109 ) is the number of times these operations are to be repeated on a list before returning the result. The values are the nonnegative integers in the original list. Then n lines follow that define how Alice will generate a new list from a previous one. Each of these lines are in the form: xi bi,0 bi,1 . . . b1,xi This line defines the value of the i-th element in the new list to be the sum of elements: abi,0 , abi,1 , . . . , ab1,xi−1 Output The output consists of t lines, one line for each test case listing the final list of integers modulo 1000 in the form: c0 c1 . . . cn−1 Sample Input 2 2 2 1 2 2 0 1 1 1 2 4 507 692 2 0 1 1 1 Sample Output 5 2 275 692

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 51
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
/*
矩阵快速幂 列出状态转移方程
这个题读了半天...
*/
int T, n, k;
int l[MAXN],res[MAXN];
struct Mat
{
int a[MAXN][MAXN];
Mat()
{
memset(a, , sizeof(a));
}
Mat operator* (const Mat& rhs)const
{
Mat ans;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
for (int t = ; t < n; t++)
ans.a[i][j] = (ans.a[i][j] + a[i][t] * rhs.a[t][j]) % ;
}
}
return ans;
}
};
Mat fpow(Mat m, int b)
{
if (b <= ) return m;
Mat ans;
for (int i = ; i < n; i++)
ans.a[i][i] = ;
while (b != )
{
if (b & )
ans = m*ans;
m = m * m;
b = b / ;
}
return ans;
}
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &k);
for (int i = ; i < n; i++)
scanf("%d", &l[i]);
Mat M;
int x, tmp;
for (int i = ; i < n; i++)
{
scanf("%d", &x);
while (x--)
{
scanf("%d", &tmp);
M.a[i][tmp] = ;
}
} M = fpow(M, k );
memset(res, , sizeof(res));
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
res[i] = (res[i] + M.a[i][j] * l[j])%;
}
}
for (int i = ; i < n; i++)
{
if (i) printf(" ");
printf("%d", res[i]);
}
printf("\n");
}
}

F - Experienced Endeavour 矩阵快速幂的更多相关文章

  1. UVA11551 Experienced Endeavour —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-11551 题意: 给定一列数,每个数对应一个变换,变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 题解: 构造矩 ...

  2. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  3. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  4. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  5. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  6. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  7. 斐波那契数列第N项f(N)[矩阵快速幂]

    矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...

  8. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

  9. HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

随机推荐

  1. linux编译安装gcc5.3.0

    1.下载GCC5.3.0安装包 #su #cd /opt #wget http://ftp.gnu.org/gnu/gcc/gcc-5.3.0/gcc-5.3.0.tar.gz 2.解压 #.tar. ...

  2. ASP.NET GridView 控件绑定 CheckBoxList

    需求:设计这样一个页面,在页面上可以自由选择和展示各省份下城市? 思路:一次性查询出所需的记录(查询数据库的操作不宜写到 C# 代码的循环语句中),并保存到全局变量中,之后根据条件过滤出需要的.可以在 ...

  3. js截取字符串 区分中英文

    方法如下: //在一个字符串中截取前面部分文字,汉字.全角符号按2个占位,数字英文.半角按一个占位,未显示完的最后加入“……”. //适合多行显示. function suolve(str, sub_ ...

  4. Python 快排[pythonnic]

    def QS(array): less = [] more = [] if len(array) <= 1: return array head = array.pop() for x in a ...

  5. Java———较大二进制文件的读、写

    由于项目需要,需要对二进制文件进行读写.转换. 文件说明:由其他程序得到的二进制文件,文件内容为:包含23543个三角形.13270个顶点的三角网所对应的721组流速矢量(u.v)文件,通俗些说,一条 ...

  6. 关于.Net的强名称(Strong Name)

    下面是我在CSDN上发表的<关于.Net的强名称(Strong Name)>,转载于此. 关于.Net的强名称(Strong Name)  

  7. 使用Way.EntityDB进行Entity Framework Core数据库建模

    Way.EntityDB是一个基于EF Core的数据层框架,它取消了EF Core的Migration机制,因为Migration并不是通用的,比如说sql server生成的migration,如 ...

  8. CAD隐藏或显示工具条上的按钮(com接口VB语言)

    主要用到函数说明: MxDrawXCustomFunction::Mx_HideToolBarControl 隐藏或显示工具条上的按钮.详细说明如下: 参数 说明 IN LPCTSTR pszTool ...

  9. 梦想Android版CAD控件2018.10.12更新

    下载地址: http://www.mxdraw.com/ndetail_10106.html 1. 增加读写对象扩展字典功能 2. 修改样条线显示错误 3. 修改shx文字显示错误 4. 增加向量运算 ...

  10. 08Oracle Database 完整性约束

    Oracle Database 完整性约束 非空约束 创建表时 Create table table_name( Column_name datatype NOT NULL,… ); 修改表时 Alt ...