Alice is given a list of integers by Bob and is asked to generate a new list where each element in the new list is the sum of some other integers in the original list. The task is slightly more involved, as Bob also asks Alice to repeat this several times before giving him the result. Help Alice automate her task. Input The first line of the input is t (1 ≤ t ≤ 10), the number of cases to follow. Each case is in the following format: n r a0 a1 . . . an−1 x0 b0,0 b0,1 . . . b0,x0−1 x1 b1,0 b1,1 . . . b1,x1−1 . . . xn−1 bn−1,0 bn−1,1 . . . bn−1,xn−1−1 Each case begins with the integer n (1 ≤ n ≤ 50), which is the number of elements in the list of integers that Alice is given. The integer r (1 ≤ r ≤ 109 ) is the number of times these operations are to be repeated on a list before returning the result. The values are the nonnegative integers in the original list. Then n lines follow that define how Alice will generate a new list from a previous one. Each of these lines are in the form: xi bi,0 bi,1 . . . b1,xi This line defines the value of the i-th element in the new list to be the sum of elements: abi,0 , abi,1 , . . . , ab1,xi−1 Output The output consists of t lines, one line for each test case listing the final list of integers modulo 1000 in the form: c0 c1 . . . cn−1 Sample Input 2 2 2 1 2 2 0 1 1 1 2 4 507 692 2 0 1 1 1 Sample Output 5 2 275 692

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 51
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
/*
矩阵快速幂 列出状态转移方程
这个题读了半天...
*/
int T, n, k;
int l[MAXN],res[MAXN];
struct Mat
{
int a[MAXN][MAXN];
Mat()
{
memset(a, , sizeof(a));
}
Mat operator* (const Mat& rhs)const
{
Mat ans;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
for (int t = ; t < n; t++)
ans.a[i][j] = (ans.a[i][j] + a[i][t] * rhs.a[t][j]) % ;
}
}
return ans;
}
};
Mat fpow(Mat m, int b)
{
if (b <= ) return m;
Mat ans;
for (int i = ; i < n; i++)
ans.a[i][i] = ;
while (b != )
{
if (b & )
ans = m*ans;
m = m * m;
b = b / ;
}
return ans;
}
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &k);
for (int i = ; i < n; i++)
scanf("%d", &l[i]);
Mat M;
int x, tmp;
for (int i = ; i < n; i++)
{
scanf("%d", &x);
while (x--)
{
scanf("%d", &tmp);
M.a[i][tmp] = ;
}
} M = fpow(M, k );
memset(res, , sizeof(res));
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
res[i] = (res[i] + M.a[i][j] * l[j])%;
}
}
for (int i = ; i < n; i++)
{
if (i) printf(" ");
printf("%d", res[i]);
}
printf("\n");
}
}

F - Experienced Endeavour 矩阵快速幂的更多相关文章

  1. UVA11551 Experienced Endeavour —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-11551 题意: 给定一列数,每个数对应一个变换,变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 题解: 构造矩 ...

  2. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  3. uva 10518 - How Many Calls?(矩阵快速幂)

    题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...

  4. POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18607   Accepted: 12920 Descr ...

  5. 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线

    P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...

  6. hdu 2842 Chinese Rings 矩阵快速幂

    分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...

  7. 斐波那契数列第N项f(N)[矩阵快速幂]

    矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...

  8. Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂

    https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...

  9. HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

随机推荐

  1. 推荐一波 瀑布流的RecylceView

    推荐博客:http://www.bubuko.com/infodetail-999014.html

  2. DFS/BFS(同余模) POJ 1426 Find The Multiple

    题目传送门 /* 题意:找出一个0和1组成的数字能整除n DFS:200的范围内不会爆long long,DFS水过~ */ /************************************ ...

  3. win10下spark+Python开发环境配置

    Step0:安装好Java ,jdk Step1:下载好: Step2: 将解压后的hadoop和spark设置好环境变量: 在系统path变量里面+: Step3: 使用pip安装 py4j : p ...

  4. [Python实战] 功能简单的数据查询及可视化系统

    前言 数据时代,数据的多源集成和快速检索查询是第一步,配上数据分析及可视化才能算窥得大数据一角. 创建这个项目的主要目的一是对前期工作的一些总结,二是提升自己. 这里简单介绍一下sqlpro这个项目的 ...

  5. IKanalyzer、ansj_seg、jcseg三种中文分词器的实战较量

    转自:http://lies-joker.iteye.com/blog/2173086 选手:IKanalyzer.ansj_seg.jcseg 硬件:i5-3470 3.2GHz 8GB win7 ...

  6. js中时钟表盘

    1.js时钟表盘 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&qu ...

  7. 生产环境4.3.5jboss内存调优

    1.查看jboss的监控工具 http://XXX/jmx-console/htmladaptor 2.查看jvm的监控工具 jdk\bin jvisualvm.exe jmc.exe 3.查看jbo ...

  8. (转)版本管理工具介绍——SVN篇(二)

    http://blog.csdn.net/yerenyuan_pku/article/details/72620498 上一篇文章我介绍了一下SVN,以及SVN服务器的安装,相信大家都安装了,接下来我 ...

  9. Change the color of a link in an NSMutableAttributedString

    Swift Updated for Swift 3 Use with a textView.linkTextAttributes = [NSForegroundColorAttributeName: ...

  10. xilinx vivado 百度云分享 vivado2019.1 2018.3 2017.4

    vivado2019.1 sdx套件 链接:https://pan.baidu.com/s/1ymRpUa2UYTFuafEChA0-ZQ 提取码:cd4p 复制这段内容后打开百度网盘手机App,操作 ...