F - Experienced Endeavour 矩阵快速幂
Alice is given a list of integers by Bob and is asked to generate a new list where each element in the new list is the sum of some other integers in the original list. The task is slightly more involved, as Bob also asks Alice to repeat this several times before giving him the result. Help Alice automate her task. Input The first line of the input is t (1 ≤ t ≤ 10), the number of cases to follow. Each case is in the following format: n r a0 a1 . . . an−1 x0 b0,0 b0,1 . . . b0,x0−1 x1 b1,0 b1,1 . . . b1,x1−1 . . . xn−1 bn−1,0 bn−1,1 . . . bn−1,xn−1−1 Each case begins with the integer n (1 ≤ n ≤ 50), which is the number of elements in the list of integers that Alice is given. The integer r (1 ≤ r ≤ 109 ) is the number of times these operations are to be repeated on a list before returning the result. The values are the nonnegative integers in the original list. Then n lines follow that define how Alice will generate a new list from a previous one. Each of these lines are in the form: xi bi,0 bi,1 . . . b1,xi This line defines the value of the i-th element in the new list to be the sum of elements: abi,0 , abi,1 , . . . , ab1,xi−1 Output The output consists of t lines, one line for each test case listing the final list of integers modulo 1000 in the form: c0 c1 . . . cn−1 Sample Input 2 2 2 1 2 2 0 1 1 1 2 4 507 692 2 0 1 1 1 Sample Output 5 2 275 692
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<cmath>
#include<map>
#include<stack>
#include<set>
#include<string>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
#define MAXN 51
#define MOD 10000007
#define INF 1000000009
const double eps = 1e-;
/*
矩阵快速幂 列出状态转移方程
这个题读了半天...
*/
int T, n, k;
int l[MAXN],res[MAXN];
struct Mat
{
int a[MAXN][MAXN];
Mat()
{
memset(a, , sizeof(a));
}
Mat operator* (const Mat& rhs)const
{
Mat ans;
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
for (int t = ; t < n; t++)
ans.a[i][j] = (ans.a[i][j] + a[i][t] * rhs.a[t][j]) % ;
}
}
return ans;
}
};
Mat fpow(Mat m, int b)
{
if (b <= ) return m;
Mat ans;
for (int i = ; i < n; i++)
ans.a[i][i] = ;
while (b != )
{
if (b & )
ans = m*ans;
m = m * m;
b = b / ;
}
return ans;
}
int main()
{
scanf("%d", &T);
while (T--)
{
scanf("%d%d", &n, &k);
for (int i = ; i < n; i++)
scanf("%d", &l[i]);
Mat M;
int x, tmp;
for (int i = ; i < n; i++)
{
scanf("%d", &x);
while (x--)
{
scanf("%d", &tmp);
M.a[i][tmp] = ;
}
} M = fpow(M, k );
memset(res, , sizeof(res));
for (int i = ; i < n; i++)
{
for (int j = ; j < n; j++)
{
res[i] = (res[i] + M.a[i][j] * l[j])%;
}
}
for (int i = ; i < n; i++)
{
if (i) printf(" ");
printf("%d", res[i]);
}
printf("\n");
}
}
F - Experienced Endeavour 矩阵快速幂的更多相关文章
- UVA11551 Experienced Endeavour —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-11551 题意: 给定一列数,每个数对应一个变换,变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 题解: 构造矩 ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- uva 10518 - How Many Calls?(矩阵快速幂)
题目链接:uva 10518 - How Many Calls? 公式f(n) = 2 * F(n) - 1, F(n)用矩阵快速幂求. #include <stdio.h> #inclu ...
- POJ 3070 Fibonacci 矩阵快速幂模板
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18607 Accepted: 12920 Descr ...
- 【模板】矩阵快速幂 洛谷P2233 [HNOI2002]公交车路线
P2233 [HNOI2002]公交车路线 题目背景 在长沙城新建的环城公路上一共有8个公交站,分别为A.B.C.D.E.F.G.H.公共汽车只能够在相邻的两个公交站之间运行,因此你从某一个公交站到另 ...
- hdu 2842 Chinese Rings 矩阵快速幂
分析: 后面的环能不能取下来与前面的环有关,前面的环不被后面的环所影响.所以先取最后面的环 设状态F(n)表示n个环全部取下来的最少步数 先取第n个环,就得使1~n-2个环属于被取下来的状态,第n-1 ...
- 斐波那契数列第N项f(N)[矩阵快速幂]
矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到 ...
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- HDU 1005 Number Sequence【斐波那契数列/循环节找规律/矩阵快速幂/求(A * f(n - 1) + B * f(n - 2)) mod 7】
Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
随机推荐
- 一个包含所有C++头文件的头函数
#include<bits/stdc++.h> using namespace std; 使用方法和平常的头文件一样,#include<bits/stdc++.h>包含以下头文 ...
- RaspberryPi cProfile使用
使用sudo python -m cProfile -o 1.cprof your.py生成cprof文件 windows下安装snakeviz:pip install -i https://pypi ...
- idea之映射servlet问题
方式一: 配置web.xml如下节点,事例如下: servlet> <servlet-name>HelloWorld</servlet-name> ...
- Java 8 (8) 默认方法
传统上,Java程序的接口是将相关方法按照预定组合到一起的方式.实现接口的类必须为接口中定义的方法提供一个实现,或者从父类中集成它的实现.但是,一旦类库的设计者需要更新接口,向接口中加入新的方法时候, ...
- 6.12---bug
- maven idea
写在前面的话:此篇文章教程是在IntelliJ IDEA中搭建的maven项目.(建议eclipse党快点转IDEA吧,IDEA大法好.逃… 1.maven的安装 前往Apache Maven官网点击 ...
- Python爬虫+颜值打分,5000+图片找到你的Mrs. Right
一见钟情钟的不是情,是脸 日久生情生的不是脸,是情 项目简介 本项目利用Python爬虫和百度人脸识别API,针对简书交友专栏,爬取用户照片(侵删),并进行打分. 本项目包括以下内容: 图片爬 ...
- autocad 注册表
序号 版本号1 版本号2 描述 1 R15.0 1:804 2002中文版 2 R15.0 1:409 2002英文版 3 R16.0 201:804 2004中文版 4 R16.0 201:409 ...
- os下,vs code 自动编译ts
nodejs安装ts npm install -g typescript 进入工程目录,用命令初始化ts(生成tsconfig.json) tsc --init 如果要指定生成目录,打开tsconfi ...
- vue组件---动态组件之多标签页面
首先看下效果图 代码: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> & ...