题目描述

在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入输出格式

输入格式:

n k xl y1 x2 y2 ... ...

xn yn (0<=xi,yi<=500)

输出格式:

输出至屏幕。格式为:

一个整数,即满足条件的最小的矩形面积之和。

输入输出样例

输入样例#1:

4 2
1 1
2 2
3 6
0 7
输出样例#1:

4

搜索。这题剪枝方法似乎多种多样。

这份代码的做法:

将读入的坐标按x和y从小到大排序,然后搜索将连续的i个点分在一起,期间判断问题是否可行,以及进行各种小优化。

 /*By SilverN*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct point{
int x,y;
}a[];
int cmp(point a,point b){
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
struct block{
int x1,y1,x2,y2;
}b[];
int n,k;
int ans=1e9;
void DFS(int pos,int cnt,int smm){
if(pos>n){
ans=min(ans,smm);
return;
}
if(cnt>k)return;
int i,j;
b[cnt].x1=a[pos].x;
b[cnt].x2=a[pos].x;
b[cnt].y1=a[pos].y;
b[cnt].y2=a[pos].y;
for(i=pos;i<=n;i++){
b[cnt].y2=max(b[cnt].y2,a[i].y);
b[cnt].x2=max(b[cnt].x2,a[i].x);
b[cnt].x1=min(b[cnt].x1,a[i].x);
b[cnt].y1=min(b[cnt].y1,a[i].y);
for(j=;j<cnt;j++){
if(b[cnt].x1<=b[j].x2 && b[cnt].y1<=b[j].y2)return;
}
if(i<n && cnt==k)continue;
DFS(i+,cnt+,smm+(b[cnt].x2-b[cnt].x1)*(b[cnt].y2-b[cnt].y1));
}
return;
}
int main(){
n=read();k=read();
int i,j;
for(i=;i<=n;i++){
a[i].y=read();a[i].x=read();
}
sort(a+,a+n+,cmp);
memset(b,-,sizeof b);
DFS(,,);
printf("%d\n",ans);
return ;
}

[NOIP2002] 提高组 洛谷P1034 矩形覆盖的更多相关文章

  1. 洛谷P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  2. 洛谷 P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​( ...

  3. 洛谷 - P1034 - 矩形覆盖 - dfs

    https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...

  4. 洛谷——P1034 矩形覆盖

    https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...

  5. [NOIP2002] 提高组 洛谷P1033 自由落体

    题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...

  6. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  7. [NOIP2011] 提高组 洛谷P1003 铺地毯

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  8. [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...

  9. [NOIP2012] 提高组 洛谷P1084 疫情控制

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

随机推荐

  1. springdata-jpa 八种查询方法

    使用:maven+Spring+jpa+Junit4 查询方式:SQL,JPQL查询,Specification多条件复杂查询 返回类型:list<POJO>,list<Stinrg ...

  2. Photoshop 注册破解

    本机测试环境为Photoshop cs4 破解方式一: 打开C:\windows\system32\drivers\etc\"找到 hosts 文件, 右键点击--打开方式---记事本,然后 ...

  3. 光线步进——RayMarching入门

    入门实现 先用RayMarching描绘一个球体,最后在进行光照计算参考:https://www.shadertoy.com/view/llt3R4 模拟摄像机射线float3 rayDirectio ...

  4. import downloadjs from 'downloadjs' 如果是自己写的函数 没用默认导出 记得加花括号 例如 import { download } from './data.js'

    import downloadjs from 'downloadjs' 如果是自己写的函数 没用默认导出 记得加花括号 例如 import { download } from './data.js'

  5. MySQL系列(二)--MySQL存储引擎

    影响数据库性能的因素: 1.硬件环境:CPU.内存.存盘IO.网卡流量等 2.存储引擎的选择 3.数据库参数配置(影响最大) 4.数据库结构设计和SQL语句 MySQL采用插件式存储引擎,可以自行选择 ...

  6. Windows下使用ffmpeg与java实现截取视频缩略图

    [ffmpeg.exe可执行文件获取]: 网上搜索后得到编译好的ffmpeg文件,下载地址:http://download.csdn.net/source/453719 [安装]: 将下载的文件解压, ...

  7. 一个小笔记(2):Socket网络编程

    网络通信的流程: 服务器端申请套接字 -> 绑定套接字到本地,打开端口 -> 监听端口 -> 等待接受消息 -> 有消息之后,读取消息 客户端申请套接字 -> 向服务端发 ...

  8. 【软件构造】第三章第五节 ADT和OOP中的等价性

    第三章第五节 ADT和OOP中的等价性 在很多场景下,需要判定两个对象是否 “相等”,例如:判断某个Collection 中是否包含特定元素. ==和equals()有和区别?如何为自定义 ADT正确 ...

  9. PHP17 PDO

    学习要点 PDO简要 PDO对象 PDO对象的使用 PDOStatement对象 PDO事务处理 PDO简要 PHP支持那些数据库操作 MySQL,Oracle,SQLServer,SQLite.Po ...

  10. java中等待所有线程都执行结束

    转自:http://blog.csdn.net/liweisnake/article/details/12966761 今天看到一篇文章,是关于java中如何等待所有线程都执行结束,文章总结得很好,原 ...