题目描述

在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示。例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一。

这些点可以用 k 个矩形(1<=k<=4)全部覆盖,矩形的边平行于坐标轴。当 k=2 时,可用如图二的两个矩形 sl,s2 覆盖,s1,s2 面积和为 4。问题是当 n 个点坐标和 k 给出后,怎样才能使得覆盖所有点的 k 个矩形的面积之和为最小呢。约定:覆盖一个点的矩形面积为 0;覆盖平行于坐标轴直线上点的矩形面积也为0。各个矩形必须完全分开(边线与顶点也都不能重合)。

输入输出格式

输入格式:

n k xl y1 x2 y2 ... ...

xn yn (0<=xi,yi<=500)

输出格式:

输出至屏幕。格式为:

一个整数,即满足条件的最小的矩形面积之和。

输入输出样例

输入样例#1:

4 2
1 1
2 2
3 6
0 7
输出样例#1:

4

搜索。这题剪枝方法似乎多种多样。

这份代码的做法:

将读入的坐标按x和y从小到大排序,然后搜索将连续的i个点分在一起,期间判断问题是否可行,以及进行各种小优化。

 /*By SilverN*/
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct point{
int x,y;
}a[];
int cmp(point a,point b){
if(a.x==b.x)return a.y<b.y;
return a.x<b.x;
}
struct block{
int x1,y1,x2,y2;
}b[];
int n,k;
int ans=1e9;
void DFS(int pos,int cnt,int smm){
if(pos>n){
ans=min(ans,smm);
return;
}
if(cnt>k)return;
int i,j;
b[cnt].x1=a[pos].x;
b[cnt].x2=a[pos].x;
b[cnt].y1=a[pos].y;
b[cnt].y2=a[pos].y;
for(i=pos;i<=n;i++){
b[cnt].y2=max(b[cnt].y2,a[i].y);
b[cnt].x2=max(b[cnt].x2,a[i].x);
b[cnt].x1=min(b[cnt].x1,a[i].x);
b[cnt].y1=min(b[cnt].y1,a[i].y);
for(j=;j<cnt;j++){
if(b[cnt].x1<=b[j].x2 && b[cnt].y1<=b[j].y2)return;
}
if(i<n && cnt==k)continue;
DFS(i+,cnt+,smm+(b[cnt].x2-b[cnt].x1)*(b[cnt].y2-b[cnt].y1));
}
return;
}
int main(){
n=read();k=read();
int i,j;
for(i=;i<=n;i++){
a[i].y=read();a[i].x=read();
}
sort(a+,a+n+,cmp);
memset(b,-,sizeof b);
DFS(,,);
printf("%d\n",ans);
return ;
}

[NOIP2002] 提高组 洛谷P1034 矩形覆盖的更多相关文章

  1. 洛谷P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4( ...

  2. 洛谷 P1034 矩形覆盖

    P1034 矩形覆盖 题目描述 在平面上有nn个点(n \le 50n≤50),每个点用一对整数坐标表示.例如:当 n=4n=4 时,44个点的坐标分另为:p_1p1​(1,11,1),p_2p2​( ...

  3. 洛谷 - P1034 - 矩形覆盖 - dfs

    https://www.luogu.org/problemnew/show/P1034 可能是数据太水了瞎搞都可以过. 判断两个平行于坐标轴的矩形相交(含顶点与边相交)的代码一并附上. 记得这里的xy ...

  4. 洛谷——P1034 矩形覆盖

    https://www.luogu.org/problem/show?pid=1034 题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的 ...

  5. [NOIP2002] 提高组 洛谷P1033 自由落体

    题目描述 在高为 H 的天花板上有 n 个小球,体积不计,位置分别为 0,1,2,….n-1.在地面上有一个小车(长为 L,高为 K,距原点距离为 S1).已知小球下落距离计算公式为 d=1/2*g* ...

  6. [NOIP2002] 提高组 洛谷P1031 均分纸牌

    题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 ...

  7. [NOIP2011] 提高组 洛谷P1003 铺地毯

    题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...

  8. [NOIP2014] 提高组 洛谷P2038 无线网络发射器选址

    题目描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129 条东西向街道和129 条南北向街道所形成的网格状,并且相邻 ...

  9. [NOIP2012] 提高组 洛谷P1084 疫情控制

    题目描述 H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树,1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散 ...

随机推荐

  1. JS进阶-特殊形式的函数-返回函数的函数/重写自己的函数

    返回函数的函数 // 返回函数的函数 function a() { alert("aa"); return function () { alert("bb"); ...

  2. 编程挑战JavaScript进阶篇(慕课网题目)

    编程挑战 现在利用之前我们学过的JavaScript知识,实现选项卡切换的效果. 效果图: 文字素材: 房产: 275万购昌平邻铁三居 总价20万买一居    200万内购五环三居 140万安家东三环 ...

  3. 小程序canvas截图组件

    最近做一个小程序的过程中,需要用到截图功能,网上搜了一下,发现没有符合要求的,就自己搞了个组件,方便复用. 目前功能很简单,传入宽高和图片路径即可,宽高是为了计算截图的比例,只支持缩放和移动. 实现思 ...

  4. 来,一起梳理下Android响应点击事件的方法

    一.设置setOnClickListener 这应该是最原始的方法了吧,来,先上代码: 布局文件: <Button android:id="@+id/button1" and ...

  5. Javascript异步编程的常用方法

    Javascript语言的执行环境是"单线程"(single thread).所谓"单线程",就是指一次只能完成一件任务.如果有多个任务,就必须排队,前面一个任 ...

  6. COGS 1743. 忠诚

    ★   输入文件:faithful.in   输出文件:faithful.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 老管家是一个聪明能干的人.他为财主工作了整整1 ...

  7. sccm系统更新补丁后服务无法正常启动

    更新完补丁后这几个应用无法启动,最后发现计算机丢失msvcp120.dll 文件,查询相关资料发现安装vcredist 2013 从官网下载Visual C++ Redistributable Pac ...

  8. 前端什么是BFC

    什么是BFC? 全称块级格式化上下文?什么意思不懂.看了好多博客,基本都是抄的,真心都不是大白话.我今天来总结一下,用菜鸟级别的语言来描述. BFC 应该可以抽象成一个 独立的个体,出淤泥而不染的白莲 ...

  9. android打包需要的图标

    ldpi:mdpi:hdpi:xhdpi:xxhdpi=3:4:6:8:12 大小: 32x32.png 48 72 96 144

  10. 解决margin塌陷问题

    父元素添加: border: 1px solid transparent; 或者 over-flow:hidden;