/*
首先预处理好f g数组
fi :以a[i]为结尾的 最长上升子序列的长度
gi :以a[i]为开始的 最长上升子序列的长度
mxx : 最长上升子序列的长度
线段树优化 nlogn
(不包含a[i]==0) 显然把所有0换成x 只可能是mxx变成mxx+1 然后我们考虑一对 i j (下标)
若 f[i]+g[j]==mxx 则 所有a[i]+1~~~a[j]-1之间的x
他们对用的lis长度为mxx+1
然后枚举i j凉了
对于一个i 我们只需要找到 他后面的 一个j 满足 f[i]+g[j]==mxx 并且a[j]最大
然后维护bg[i] 表示长度为g[j]==i的所有的 a[j]中最大的
从后往前枚举i 然后维护 bg O(1)转移
上述过程可能 i和bg维护的j之间 他没有0 那就不能转移
所以 按0分段 遇到0 就把之前的信息更新bg 然后没了 */
#include<cstdio>
#include<iostream>
#include<cstdlib>
#define lc k*2
#define rc k*2+1
#define mid (l+r)/2
#define maxn 400010
#define ll long long
using namespace std;
ll n,a[maxn],f[maxn],s[maxn],g[maxn],as[maxn],bg[maxn],c[maxn][];
void Insert(ll k,ll l,ll r,ll x,ll y){
if(x==l&&r==x){
s[k]=max(s[k],y);return;
}
if(x<=mid)Insert(lc,l,mid,x,y);
else Insert(rc,mid+,r,x,y);
s[k]=max(s[lc],s[rc]);
}
ll Query(ll k,ll l,ll r,ll x,ll y){
if(x>y)return ;
if(x<=l&&y>=r)return s[k];
ll res=;
if(x<=mid)res=max(res,Query(lc,l,mid,x,y));
if(y>mid)res=max(res,Query(rc,mid+,r,x,y));
return res;
}
int main(){
while(~scanf("%lld",&n)){
for(ll i=;i<=n*;i++)
s[i]=f[i]=g[i]=as[i]=;
for(ll i=;i<=n;i++){
scanf("%lld",&a[i]);
//a[i]=rand();
f[i]=;g[i]=;
}
ll mxx=;
for(ll i=;i<=n;i++){
if(a[i]==)continue;
ll mx=Query(,,n,,a[i]-);
f[i]=mx+;mxx=max(mxx,f[i]);
Insert(,,n,a[i],f[i]);
}
for(ll i=;i<=n*;i++)s[i]=;
for(ll i=n;i>=;i--){
if(a[i]==)continue;
ll mx=Query(,,n,a[i]+,n);
g[i]=mx+;Insert(,,n,a[i],g[i]);
}
for(ll i=;i<=n*;i++)bg[i]=;
ll cnt=;a[]=-;
for(ll i=n;i>=;i--){
if(a[i]==){
for(ll j=;j<=cnt;j++)
bg[c[j][]]=max(bg[c[j][]],c[j][]);
cnt=;bg[]=n+;
}
else{
ll mx=bg[mxx-f[i]];
c[++cnt][]=g[i];c[cnt][]=a[i];
if(mx-<a[i]+)continue;
as[a[i]+]++;as[mx]--;
}
}
ll ans=;
for(ll i=;i<=n;i++)as[i]+=as[i-];
for(ll i=;i<=n;i++){
if(as[i]>)ans+=i*(mxx+);
else ans+=i*mxx;
//("%lld\n",ans);
}
printf("%lld\n",ans);
}
return ;
}

Longest Increasing Subsequence HDU - 6284的更多相关文章

  1. 最长上升子序列 LIS(Longest Increasing Subsequence)

    引出: 问题描述:给出一个序列a1,a2,a3,a4,a5,a6,a7….an,求它的一个子序列(设为s1,s2,…sn),使得这个子序列满足这样的性质,s1<s2<s3<…< ...

  2. [LeetCode] Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  3. [tem]Longest Increasing Subsequence(LIS)

    Longest Increasing Subsequence(LIS) 一个美丽的名字 非常经典的线性结构dp [朴素]:O(n^2) d(i)=max{0,d(j) :j<i&& ...

  4. [LintCode] Longest Increasing Subsequence 最长递增子序列

    Given a sequence of integers, find the longest increasing subsequence (LIS). You code should return ...

  5. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  6. [LeetCode] Longest Increasing Subsequence

    Longest Increasing Subsequence Given an unsorted array of integers, find the length of longest incre ...

  7. The Longest Increasing Subsequence (LIS)

    传送门 The task is to find the length of the longest subsequence in a given array of integers such that ...

  8. 300. Longest Increasing Subsequence

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...

  9. SPOJ LIS2 Another Longest Increasing Subsequence Problem 三维偏序最长链 CDQ分治

    Another Longest Increasing Subsequence Problem Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://a ...

随机推荐

  1. canvas一周一练 -- canvas绘制立体文字(2)

    运行效果: <!DOCTYPE html> <html> <head> </head> <body> <canvas id=" ...

  2. C++ 程序的编译

    一.编译器都具备集成开发环境(Integrated Developed Environment,IDE) 二.程序源文件命名约定: C++ 的后缀一般是 .cpp .cc .C .cpp .cxx 三 ...

  3. BeanFactory的生命周期

    Bean自身的方法:调用Bean构造函数实例化Bean.调用setter设置Bean的属性值及通过<beam=n>的init-method和destory-method所制定的方法. Be ...

  4. 微信小程序中使用ECharts 异步加载数据 实现图表

    <!--pages/bar/index.wxml--> <view class="container"> <ec-canvas id="my ...

  5. 当点阵字库遇到3D

    早在遥远的DOS时代,点阵汉字库为计算机处理汉字起到了关键作用.当时的显示器在图形模式下的分辨率只有640x480甚至320x200,显示汉字直接使用点阵字库在屏幕上打点就可以了.如今的电脑屏幕甚至手 ...

  6. Xcode git 忽略user interface state文件

    退出xcdoe, 打开终端(Terminal),进入到你的项目目录下 在终端输入如下代码 git rm --cached *.xcuserstate git commit -m "Remov ...

  7. LinuxMint19.1安装搜狗拼音输入法

    Installation 1.到搜狗拼音输入法官网下载Linux版. 2.使用dpkg命令安装deb软件包 $ sudo dpkg -i sogoupinyin_2.2.0.0108_amd.deb ...

  8. LINUX-初始化一个文件系统

    mkfs /dev/hda1 在hda1分区创建一个文件系统 mke2fs /dev/hda1 在hda1分区创建一个linux ext2的文件系统 mke2fs -j /dev/hda1 在hda1 ...

  9. python virtualenv 虚拟环境的应用

    为什么要使用python的虚拟环境呢?: 首先我们来说不实用虚拟环境的情况: 在Python应用程序开发的过程中,系统安装的Python3只有一个版本:3.7.所有第三方的包都会被pip3安装到   ...

  10. v-on(事件处理)

    1.监听事件  v-on:click="msg+=1" (msg是写在data里) 2.方法事件处理器 v-on:click = "jia" (jia是写在me ...