没有复杂结构甚至不长但是写起来就很想死的代码类型

原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值

然后就变成求单列最大最小值,用上面同样的方法处理出对于列的mn2mx2即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,m,k,a[N][N],mn1[N][N],mx1[N][N],mn2[N][N],mx2[N][N],ans=1e9,q1[N],l1,r1,q2[N],l2,r2;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read();
for(int i=1;i<=n;i++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int j=2;j<=m;j++)
{
while(a[i][j]>=a[i][q2[r2]]&&l2<=r2)
r2--;
while(a[i][j]<=a[i][q1[r1]]&&l1<=r1)
r1--;
q2[++r2]=j;q1[++r1]=j;
while(j-q2[l2]>=k)
l2++;
while(j-q1[l1]>=k)
l1++;
if(j>=k)
mx1[i][j-k+1]=a[i][q2[l2]],mn1[i][j-k+1]=a[i][q1[l1]];
}
}
for (int j=1;j<=m-k+1;j++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int i=2;i<=n;i++)
{
while(mx1[i][j]>=mx1[q2[r2]][j]&&l2<=r2)
r2--;
while(mn1[i][j]<=mn1[q1[r1]][j]&&l1<=r1)
r1--;
q2[++r2]=i;q1[++r1]=i;
while(i-q2[l2]>=k)
l2++;
while(i-q1[l1]>=k)
l1++;
if(i>=k)
mx2[i-k+1][j]=mx1[q2[l2]][j],mn2[i-k+1][j]=mn1[q1[l1]][j];
}
}
for(int i=1;i<=n-k+1;i++)
for(int j=1;j<=m-k+1;j++)
ans=min(ans,mx2[i][j]-mn2[i][j]);
printf("%d\n",ans);
return 0;
}

bzoj 1047: [HAOI2007]理想的正方形【单调队列】的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  4. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  5. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  6. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  7. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  8. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. [WPF自定义控件库]为Form和自定义Window添加FunctionBar

    1. 前言 我常常看到同一个应用程序中的表单的按钮----也就是"确定"."取消"那两个按钮----实现得千奇百怪,其实只要使用统一的Style起码就可以统一按 ...

  2. c网购物车流程图

    1. 流程图 2. 流程介绍 1) 客人浏览模式下(未登录状态)加入购物车 这个时候回校验一下商品的可售数量,以及状态等等,校验成功后会保存到cookie和memcache,数据操作校验以memcac ...

  3. CSU1217

    就跟数字出现奇数次道理是一样的,将一个数转化为2进制后找出现奇数次个1的位置,最后将其输出来便是出现奇数次的数 #include <cstdio> int main() { int n,a ...

  4. hdu 361B

    #include<stdio.h> int a[100100]; int main() { int n,i,k; while(scanf("%d%d",&n,& ...

  5. [网络流24题] 方格取数问题(cogs 734)

    «问题描述:在一个有m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.«编程任务:对于给定的方格棋 ...

  6. linux 常见名词及命令(六)

    查看软件安装位置 : dpkg -L 软件包名字 ubuntu环境的apache相关命令: 查看是否启动:ps -aux | grep httpd  或者 netstat -an | grep :80 ...

  7. 封装HttpURLConnection

    package com.pingyijinren.test; import java.io.BufferedReader; import java.io.InputStream; import jav ...

  8. 绿盟NF防火墙系统

    http://www.nsfocus.com.cn/ http://www.nsfocus.com.cn/products/details_22_5.html

  9. ubuntu12.04+cuda6.0+opencv2.4.9

    更新了cuda之后,opencv的gpu模块又要重新编译了,这个地方有一个疑问,我对cuda6.0装了两次,第一次装好之后,没有配一个bumblebee,重装了cuda6.0之后,发现原来编译的ope ...

  10. JAVA 流程控制之选择语句

    在程序设计时,有三种基本技术可以改变程序的流程控制: 调用方法: 选择: 循环. 在这里,我们主要来讲讲选择语句. JAVA中的选择语句与C语言中的基本相同,包括: if 语句: if/else 语句 ...