没有复杂结构甚至不长但是写起来就很想死的代码类型

原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值

然后就变成求单列最大最小值,用上面同样的方法处理出对于列的mn2mx2即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,m,k,a[N][N],mn1[N][N],mx1[N][N],mn2[N][N],mx2[N][N],ans=1e9,q1[N],l1,r1,q2[N],l2,r2;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read();
for(int i=1;i<=n;i++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int j=2;j<=m;j++)
{
while(a[i][j]>=a[i][q2[r2]]&&l2<=r2)
r2--;
while(a[i][j]<=a[i][q1[r1]]&&l1<=r1)
r1--;
q2[++r2]=j;q1[++r1]=j;
while(j-q2[l2]>=k)
l2++;
while(j-q1[l1]>=k)
l1++;
if(j>=k)
mx1[i][j-k+1]=a[i][q2[l2]],mn1[i][j-k+1]=a[i][q1[l1]];
}
}
for (int j=1;j<=m-k+1;j++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int i=2;i<=n;i++)
{
while(mx1[i][j]>=mx1[q2[r2]][j]&&l2<=r2)
r2--;
while(mn1[i][j]<=mn1[q1[r1]][j]&&l1<=r1)
r1--;
q2[++r2]=i;q1[++r1]=i;
while(i-q2[l2]>=k)
l2++;
while(i-q1[l1]>=k)
l1++;
if(i>=k)
mx2[i-k+1][j]=mx1[q2[l2]][j],mn2[i-k+1][j]=mn1[q1[l1]][j];
}
}
for(int i=1;i<=n-k+1;i++)
for(int j=1;j<=m-k+1;j++)
ans=min(ans,mx2[i][j]-mn2[i][j]);
printf("%d\n",ans);
return 0;
}

bzoj 1047: [HAOI2007]理想的正方形【单调队列】的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  4. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  5. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  6. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  7. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  8. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. UART整理

    通用异步收发器简称UART,英文全称"Universal Asynchronous Receiver Transmitter".UART使用标准的TTL/CMOS逻辑电平(0~5V ...

  2. Vue页面骨架屏(二)

    实现思路 参考原文中在构建时使用 Vue 预渲染骨架屏一节介绍的思路,我将骨架屏也看成路由组件,在构建时使用 Vue 预渲染功能,将骨架屏组件的渲染结果 HTML 片段插入 HTML 页面模版的挂载点 ...

  3. Automation 的 Wait 工具

    public static WebDriverWait createWait(WebDriver driver) { return new WebDriverWait(driver, Environm ...

  4. 【HDOJ5714】拍照(线性扫描)

    题意:小明在旅游的路上看到了一条美丽的河,河上有许多船只,有的船只向左航行,有的船只向右航行.小明希望拍下这一美丽的风景,并且把尽可能多的船只都完整地拍到一张照片中. 小明位于河的边上,并且可以在河边 ...

  5. 杜教筛--51nod1239 欧拉函数之和

    求$\sum_{i=1}^{n}\varphi (i)$,$n\leqslant 1e10$. 这里先把杜教筛的一般套路贴一下: 要求$S(n)=\sum_{i=1}^{n}f(i)$,而现在有一数论 ...

  6. openjudge1944 吃糖果

    描述名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N >0).妈妈告诉名名每天可以吃一块或者两块巧克力.假设名名每天都吃巧克力,问名名共有多 ...

  7. csu - 1537: Miscalculation (模拟题)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1537 因为给出的式子是必定合法的,只要用两个栈分别保存符号和数字.算出答案后和从左至右算的答案比对 ...

  8. cogs——2084. Asm.Def的基本算法

    2084. Asm.Def的基本算法 ★☆   输入文件:asm_algo.in   输出文件:asm_algo.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] “有句 ...

  9. C语言++a与a++的实现机制与操作符结合优先级

    看到一道"经典Linux C"面试题,关于左值和右值的. 华为笔试题 1.写出推断ABCD四个表达式的是否正确, 若正确, 写出经过表达式中 a的值(3分) int a = 4; ...

  10. mac 终端经常使用命令(三)

    基本命令 1.列出文件 ls 參数 文件夹名        例: 看看驱动文件夹下有什么:ls /System/Library/Extensions 參数 -w 显示中文,-l 具体信息. -a 包含 ...