没有复杂结构甚至不长但是写起来就很想死的代码类型

原理非常简单,就是用先用单调队列处理出mn1[i][j]表示i行的j到j+k-1列的最小值,mx1[i][j]表示i行的j到j+k-1列的最大值

然后就变成求单列最大最小值,用上面同样的方法处理出对于列的mn2mx2即可

#include<iostream>
#include<cstdio>
using namespace std;
const int N=1005;
int n,m,k,a[N][N],mn1[N][N],mx1[N][N],mn2[N][N],mx2[N][N],ans=1e9,q1[N],l1,r1,q2[N],l2,r2;
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
int main()
{
n=read(),m=read(),k=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=read();
for(int i=1;i<=n;i++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int j=2;j<=m;j++)
{
while(a[i][j]>=a[i][q2[r2]]&&l2<=r2)
r2--;
while(a[i][j]<=a[i][q1[r1]]&&l1<=r1)
r1--;
q2[++r2]=j;q1[++r1]=j;
while(j-q2[l2]>=k)
l2++;
while(j-q1[l1]>=k)
l1++;
if(j>=k)
mx1[i][j-k+1]=a[i][q2[l2]],mn1[i][j-k+1]=a[i][q1[l1]];
}
}
for (int j=1;j<=m-k+1;j++)
{
l2=r2=l1=r1=q2[1]=q1[1]=1;
for(int i=2;i<=n;i++)
{
while(mx1[i][j]>=mx1[q2[r2]][j]&&l2<=r2)
r2--;
while(mn1[i][j]<=mn1[q1[r1]][j]&&l1<=r1)
r1--;
q2[++r2]=i;q1[++r1]=i;
while(i-q2[l2]>=k)
l2++;
while(i-q1[l1]>=k)
l1++;
if(i>=k)
mx2[i-k+1][j]=mx1[q2[l2]][j],mn2[i-k+1][j]=mn1[q1[l1]][j];
}
}
for(int i=1;i<=n-k+1;i++)
for(int j=1;j<=m-k+1;j++)
ans=min(ans,mx2[i][j]-mn2[i][j]);
printf("%d\n",ans);
return 0;
}

bzoj 1047: [HAOI2007]理想的正方形【单调队列】的更多相关文章

  1. bzoj 1047 : [HAOI2007]理想的正方形 单调队列dp

    题目链接 1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2369  Solved: 1266[Submi ...

  2. BZOJ 1047: [HAOI2007]理想的正方形( 单调队列 )

    单调队列..先对每一行扫一次维护以每个点(x, y)为结尾的长度为n的最大最小值.然后再对每一列扫一次, 在之前的基础上维护(x, y)为结尾的长度为n的最大最小值. 时间复杂度O(ab) (话说还是 ...

  3. BZOJ 1047: [HAOI2007]理想的正方形 单调队列瞎搞

    题意很简明吧? 枚举的矩形下边界和右端点即右下角,来确定矩形位置: 每一个纵列开一个单调队列,记录从 i-n+1 行到 i 行每列的最大值和最小值,矩形下边界向下推移的时候维护一下: 然后在记录的每一 ...

  4. BZOJ1047: [HAOI2007]理想的正方形 [单调队列]

    1047: [HAOI2007]理想的正方形 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2857  Solved: 1560[Submit][St ...

  5. P2216 [HAOI2007]理想的正方形 (单调队列)

    题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...

  6. [BZOJ 1047] [HAOI2007] 理想的正方形 【单调队列】

    题目链接:BZOJ - 1047 题目分析 使用单调队列在 O(n^2) 的时间内求出每个 n * n 正方形的最大值,最小值.然后就可以直接统计答案了. 横向有 a 个单调队列(代码中是 Q[1] ...

  7. BZOJ 1047: [HAOI2007]理想的正方形

    题目 单调队列是个很神奇的东西,我以前在博客写过(吧) 我很佩服rank里那些排前几的大神,700ms做了时限10s的题,简直不能忍.(但是我还是不会写 我大概一年半没写单调队列,也有可能根本没有写过 ...

  8. Luogu 2216[HAOI2007]理想的正方形 - 单调队列

    Solution 二维单调队列, 这个数组套起来看得我眼瞎... Code #include<cstdio> #include<algorithm> #include<c ...

  9. [HAOI2007] 理想的正方形 (单调队列)

    题目链接 Solution MD,经过这道题,算是掌握单调队列了... 可以先预处理出点 \((i,j)\) 往上 \(n\) 的最大值和最小值. 然后再横着做一遍单调队列即可. Code #incl ...

随机推荐

  1. h-ui.admin.pro.iframe头部和标签Tab修改CSS

    原效果:头部高度偏高,tab标签不太好看 ​ 修改后:缩小高度,调整tab标签css样式 ​ 百度网盘链接:https://pan.baidu.com/s/1qknPNAMGL7BFUIsleOF9M ...

  2. FPGA学习笔记(八)—— 状态机设计实例之独立按键消抖

    ###### [该随笔中部分内容转载自小梅哥] ######### 独立按键消抖自古以来在单片机和FPGA中都是个不可避免的问题,首先,解释一下什么叫做按键抖动,如图,按键在按下和松开的那个瞬间存在大 ...

  3. C51 静态数码管 个人笔记

    显示器介绍 单片机系统中常用的显示器有: LED(Light Emitting Diode):发光二极管显示器 LCD(Liquid Crystal Display)液晶显示器 TFT 液晶显示器等. ...

  4. Django开发:(3.2)ORM:多表操作

    表关系总结: 一对多:在多的表中建立关联字段 多对多:创建第三张表(关联表):id 和 两个关联字段 一对一:在两张表中的任意一张表中建立关联字段(关联字段一定要加 unique 约束) 子查询:一次 ...

  5. Bzoj3038 上帝造题的七分钟2 线段树

    Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1135  Solved: 509 Description XLk觉得<上帝造题的七分钟>不太 ...

  6. windows开启远程

    windows开启远程桌面超级简单,跟linux相比太简单了. 补充:有瑕疵,应该是远程中的远程桌面属性打钩,但是W8.1没有这个选项,W7可以,其次创建一个管理员账户,身份是管理员,不是标准用户,要 ...

  7. 封装HttpURLConnection

    package com.pingyijinren.test; import java.io.BufferedReader; import java.io.InputStream; import jav ...

  8. 洛谷——P1454 圣诞夜的极光

    P1454 圣诞夜的极光 题目背景 圣诞夜系列~~ 题目描述 圣诞老人回到了北极圣诞区,已经快到12点了.也就是说极光表演要开始了.这里的极光不是极地特有的自然极光景象.而是圣诞老人主持的人造极光. ...

  9. HTML5 全屏化操作功能

    由于项目中用到了全屏化挫折功能,查看了API后写了一个简单的全屏化model <!DOCTYPE html> <html> <head> <meta http ...

  10. 如何查看sqlalchemy执行的原始sql语句?

    SQLAlchemy打开SQL语句方法如下,echo=true将开启该功能: engine = create_engine("<db_rul>", echo=True) ...