仙人掌图(有向):同时满足:1强连通;2任何边不在俩个环中。

个人理解:其实就是环之间相连,两两只有一个公共点,(其实可以缩块),那个公共点是割点。HDU数据弱,网上很多错误代码和解法也可以过。

个人解法:

我认为:

:仙人掌图必然是欧拉图!这样只用“入度=出度”就可以简单地判断强连通(欧拉图显然强连通)了!而且这个必要(不充分)条件还秒杀好多数据(强连通++)。

个人证明:反证法:若有点的入度!=出度,(不妨设入度多),那么,对于每个出度,唯一从对应入度处“回来”,形成以个环,一出一入,一一对应,现在入度多的,只有从之前的出度中“回来”(鸽巢原理),这样该边在俩个环中了,矛盾。即证。

这样只是一个必要条件罢了,还有入度==出度的,但是明显存在很多环的情况,下面用以一种普遍的解法排除即可:用dfs一遍,当发现环时(dfs发现祖先点),标记该环上所有点(祖先点/割点除外),一次,若有一个点标记俩次以上(说明有边同时在俩个环),那么必然是非仙人掌了。

这俩个条件加起来,足以判断仙人掌图。虽然暂时无法证明其充分性,但也举不出反例。

可以在uva10510 提交,数据强一些。

转载请注明出处:http://write.blog.csdn.net/postedit?ref=toolbar

代码:

#include<iostream>
#include<vector>
#include<cstdio>
#include<algorithm>
using namespace std;
int n;
vector<vector<int> >e(100000);
int ind[20010];
int outd[20010];
bool judge1() //欧拉图判断
{
for(int i=0;i<n;i++)
{
if(ind[i]!=outd[i])
return 0;
}
return 1;
}
int vis[20010];
int fa[20010];
int mark[20010];
int flag=0;
void set(int u,int vv) {
mark[u]++;
while(u!=vv)
{
u=fa[u];
mark[u]++;
if(mark[u]>1&&u!=vv){flag=1;return ;}
if(u==0)break;
}
mark[vv]--; }
void dfs(int u)
{
if(flag)return ;
for(int j=0;j<e[u].size();j++)
{
int vv=e[u][j];
if(!vis[vv])
{
fa[vv]=u;
vis[vv]=1;
dfs(vv); }
else
set(u,vv);
}
return ;
}
bool judge2() //判定2
{
vis[0]=1;
dfs(0);
if(flag)return 0;
for(int i=0;i<n;i++)
{
if(mark[i]>1)
return 0;
}
return 1;
}
int main()
{
int t;
cin>>t;
while(t--)
{
cin>>n;
for(int i=0;i<=n;i++)
{
fa[i]=-1;
mark[i]=vis[i]=ind[i]=outd[i]=0;
e[i].clear();
}
flag=0;
int ta,tb;
scanf("%d%d",&ta,&tb);
while(ta!=0||tb!=0)
{
e[ta].push_back(tb);
outd[ta]++;
ind[tb]++;
scanf("%d%d",&ta,&tb);
} if(!judge1())
{
printf("NO\n");
continue;
}
else
{ if(!judge2())
printf("NO\n");
else printf("YES\n");
}
}
return 0; }

hdu 3594 Cactus /uva 10510 仙人掌图判定的更多相关文章

  1. HDU 3594 Cactus 有向仙人掌图判定

    题意 给出一个有向图,并给出仙人掌图的定义 图本身是强连通的 每条边属于且只属于一个环 判断输入的图是否是强连通的. 分析 杭电OJ上的数据比较弱,网上一些有明显错误的代码也能AC. 本着求真务实的精 ...

  2. hdu 3594 强连通好题仙人掌图,对自己的tarjan模板改下用这个

    #include<stdio.h> #include<string.h> #define N 21000 struct node { int v,next; }bian[510 ...

  3. 仙人掌图判定及求直径HDU3594 BZOJ1023

    https://wenku.baidu.com/view/ce296043192e45361066f575.html   //仙人掌图基础知识3个判定条件 http://blog.csdn.net/y ...

  4. HDU 3594.Cactus 仙人掌图

    Cactus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. HDU 3594 Cactus (强连通+仙人掌图)

    <题目链接> <转载于 >>> > 题目大意: 给你一个图,让你判断他是不是仙人掌图. 仙人掌图的条件是: 1.是强连通图. 2.每条边在仙人掌图中只属于一个 ...

  6. HDU - 3594 Cactus

    这是一个有向仙人掌的题目,要求判定给定的图是不是强连通图,而且每一条边只能出现在一个环中,这里有一个介绍有向仙人掌的文档:http://files.cnblogs.com/ambition/cactu ...

  7. HDU 3594 Cactus(仙人掌问题)

    http://acm.hdu.edu.cn/showproblem.php?pid=3594 题意: 一个有向图,判断是否强连通和每条边只在一个环中. 思路: 仙人掌问题. 用Tarjan算法判断强连 ...

  8. hdu - 3594 Cactus (强连通)

    http://acm.hdu.edu.cn/showproblem.php?pid=3594 判断给定的图是否是强连通的,并且每条边都只属于一个连通分量. 判断强连通只需要判断缩点之后顶点数是否为1即 ...

  9. HDU 3594 Cactus (强连通分量 + 一个边只能在一个环里)

    题意:判断题目中给出的图是否符合两个条件.1 这图只有一个强连通分量 2 一条边只能出现在一个环里. 思路:条件1的满足只需要tarjan算法正常求强连通分量即可,关键是第二个条件,我们把对边的判断转 ...

随机推荐

  1. CAD交互绘制圆形云线批注(网页版)

    js中实现代码说明: 动态拖放时的绘制事件: function DoDynWorldDrawFun(dX,dY,pWorldDraw,pData) { //自定义实体的GUID标识符 var sGui ...

  2. shell脚本,通过传入的参数来计算最大值和最小值以及平均值。

    [root@localhost zuoye]# cat quansges.sh #!/bin/bash > file [ ! $# -ge ] && || echo $* > ...

  3. base64类

    public class Base64{ /** * how we separate lines, e.g. \n, \r\n, \r etc. */ private String lineSepar ...

  4. MFC编辑框换行

    字符串结尾加上"\r\n": 编辑框属性设置:Auto HScroll为False,Multiline为True,Want Return为True. =============== ...

  5. 洛谷 P2846 光开关

    https://www.luogu.org/problemnew/show/P2846 好多题解用线段树来写,然而分块不是更简单好些吗? 一个数组use记录这一块进行了多少次开关操作,两边单独计算,注 ...

  6. python中with用法及原理

    资源的管理在程序的设计上是一个很常见的问题,例如管理档案,开启的网络socket与各种锁定(locks)等.最主要的问题在于我们必须确保这些开启的资源在使用之后能够关闭(或释放),若忘记关闭这些资源, ...

  7. MySQL 上移/下移/置顶

    在编写网站系统时,难免会用到上移.下移.置顶的功能,今天小编就介绍一下我的思路. 首先,需要一张数据表: CREATE TABLE `a` ( `id` ) NOT NULL AUTO_INCREME ...

  8. Linux文件权限基础(一)

    Linux中每个文件或者目录对都有一组共9个基础权限位,没三位字符被分为一组,他们分别是属主权限位,用户组权限位,其他用户权限位. 示例: 权限位说明: r --read 可读权限 对应数字4 w - ...

  9. ASP.NET使用Memcached高缓存实例的初级介绍

    Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提供动态.数据库驱动网站的速度.Memcached ...

  10. 第一章 pyhton基础

    一 .pyhton2与python3的区别 在pyhton2中,其中编码默认使用的是ascii编码,输出格式为print"xxx",输入为raw_input(“请输入”),在整型中 ...