D. The Child and Sequence
time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at him. A lot of important things were lost, in particular the favorite sequence of Picks.

Fortunately, Picks remembers how to repair the sequence. Initially he should create an integer array a[1], a[2], ..., a[n]. Then he should perform a sequence of m operations. An operation can be one of the following:

  1. Print operation l, r. Picks should write down the value of .
  2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[imod x for each i (l ≤ i ≤ r).
  3. Set operation k, x. Picks should set the value of a[k] to x (in other words perform an assignment a[k] = x).

Can you help Picks to perform the whole sequence of operations?

Input

The first line of input contains two integer: n, m (1 ≤ n, m ≤ 105). The second line contains n integers, separated by space: a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — initial value of array elements.

Each of the next m lines begins with a number type .

  • If type = 1, there will be two integers more in the line: l, r (1 ≤ l ≤ r ≤ n), which correspond the operation 1.
  • If type = 2, there will be three integers more in the line: l, r, x (1 ≤ l ≤ r ≤ n; 1 ≤ x ≤ 109), which correspond the operation 2.
  • If type = 3, there will be two integers more in the line: k, x (1 ≤ k ≤ n; 1 ≤ x ≤ 109), which correspond the operation 3.
Output

For each operation 1, please print a line containing the answer. Notice that the answer may exceed the 32-bit integer.

Sample test(s)
Input
5 5 1 2 3 4 5 2 3 5 4 3 3 5 1 2 5 2 1 3 3 1 1 3
Output
8 5
Input
10 10 6 9 6 7 6 1 10 10 9 5 1 3 9 2 7 10 9 2 5 10 8 1 4 7 3 3 7 2 7 9 9 1 2 4 1 6 6 1 5 9 3 1 10
Output
49 15 23 1 9
Note

Consider the first testcase:

  • At first, a = {1, 2, 3, 4, 5}.
  • After operation 1, a = {1, 2, 3, 0, 1}.
  • After operation 2, a = {1, 2, 5, 0, 1}.
  • At operation 3, 2 + 5 + 0 + 1 = 8.
  • After operation 4, a = {1, 2, 2, 0, 1}.
  • At operation 5, 1 + 2 + 2 = 5.

注意:剪枝:若x<mod,x=x;

 #include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<queue>
#include<map> #define N 100010
#define M 15
//#define mod 1000000007
//#define mod2 100000000
#define ll long long
#define maxi(a,b) (a)>(b)? (a) : (b)
#define mini(a,b) (a)<(b)? (a) : (b) using namespace std; int n,q;
int x[N];
int type;
int a,b,c; struct node
{
ll sum;
int ma;
}tree[*N];
/*
void update(int l,int r,int i)
{
if(!tree[i].mark) return;
int mid=(l+r)/2;
tree[2*i].sum+=tree[i].mark*(ll)(mid-l+1);
tree[2*i+1].sum+=tree[i].mark*(ll)(r-mid);
tree[2*i].mark+=tree[i].mark;
tree[2*i+1].mark+=tree[i].mark;
tree[i].mark=0; }*/ ll query(int tl,int tr,int l,int r,int i)
{
if(tl>r || tr<l)
return ;
if(tl<=l && r<=tr)
return tree[i].sum;
// update(l,r,i);
int mid=(l+r)/; return query(tl,tr,l,mid,*i)+query(tl,tr,mid+,r,*i+);
}
/*
void addd(int tl,int tr,int l,int r,int i,int val)
{
if(tl>r || tr<l)
return;
if(tl<=l && tr>=r){
tree[i].sum+=val*(ll)(r-l+1);
tree[i].mark+=val;
return;
}
update(l,r,i);
int mid=(l+r)/2;
addd(tl,tr,l,mid,2*i,val);
addd(tl,tr,mid+1,r,2*i+1,val);
tree[i].sum=tree[2*i].sum+tree[2*i+1].sum;
}*/ void modefiyMod(int tl,int tr, int l, int r,int i,int mod)
{
if(tree[i].ma<mod) return;
if(l==r){
tree[i].sum=tree[i].ma=tree[i].sum%mod;
return;
}
else{
int mid=(l+r)/;
if(tr<=mid){
modefiyMod(tl,tr,l,mid,i*,mod);
}
else if(tl>mid){
modefiyMod(tl,tr,mid+,r,i*+,mod);
}
else{
modefiyMod(tl,tr,l,mid,i*,mod);
modefiyMod(tl,tr,mid+,r,i*+,mod);
}
tree[i].sum=tree[*i].sum+tree[*i+].sum;
tree[i].ma=max(tree[*i].ma,tree[*i+].ma);
}
} void setVal(int i, int l, int r,int x,int v)
{
if(l==r){
tree[i].sum=tree[i].ma=v;
return;
}
else{
int mid=(l+r)/;
if(x<=mid){
setVal(i*,l,mid,x,v);
}
else{
setVal(i*+,mid+,r,x,v);
}
tree[i].sum=tree[*i].sum+tree[*i+].sum;
tree[i].ma=max(tree[*i].ma,tree[*i+].ma);
}
} void build_tree(int l,int r,int i)
{
if(l==r){
tree[i].sum=x[l];
tree[i].ma=x[l];
return;
}
int mid=(l+r)/;
build_tree(l,mid,*i);
build_tree(mid+,r,*i+);
tree[i].sum=tree[*i].sum+tree[*i+].sum;
tree[i].ma=max(tree[*i].ma,tree[*i+].ma);
} int main()
{
int i;
//freopen("data.in","r",stdin);
//scanf("%d",&T);
//for(int cnt=1;cnt<=T;cnt++)
//while(T--)
while(scanf("%d%d",&n,&q)!=EOF)
{
for(i=;i<=n;i++) scanf("%d",&x[i]);
memset(tree,,sizeof(tree));
build_tree(,n,);
while(q--){
scanf("%d",&type);
if(type==){
scanf("%d%d",&a,&b);
ll ans=query(a,b,,n,);
printf("%I64d\n",ans); }
else if(type==){
scanf("%d%d%d",&a,&b,&c);
modefiyMod(a, b, , n, , c);
}
else{
scanf("%d%d",&a,&b);
setVal(, , n, a, b);
}
}
} return ;
}

CodeForces 438D 线段树 剪枝的更多相关文章

  1. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  2. 对权值线段树剪枝的误解--以HDU6703为例

    引子 对hdu6703,首先将问题转化为"询问一个排列中大于等于k的值里,下标超过r的最小权值是多少" 我们采用官方题解中的做法:权值线段树+剪枝 对(a[i],i)建线段树,查询 ...

  3. Codeforces 444 C. DZY Loves Colors (线段树+剪枝)

    题目链接:http://codeforces.com/contest/444/problem/C 给定一个长度为n的序列,初始时ai=i,vali=0(1≤i≤n).有两种操作: 将区间[L,R]的值 ...

  4. Codeforces Round #424 (Div. 2, rated, based on VK Cup Finals) Problem E (Codeforces 831E) - 线段树 - 树状数组

    Vasily has a deck of cards consisting of n cards. There is an integer on each of the cards, this int ...

  5. HDOJ:6356-Glad You Came(线段树剪枝)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6356 解题心得: 现在深深的知道了算法复杂度的重要了,这个题算复杂度的时候还要把一些常数也算出来,不然 ...

  6. LibreOJ #6190. 序列查询(线段树+剪枝)

    莫队貌似是过不了的,这题是我没见过的科技... 首先区间按右端点排序,然后一个扫描线,扫到某个区间右端点时候计算答案,线段树上节点的信息并不需要明确定义,我们只要求线段树做到当前扫到now时,查询[L ...

  7. HDU4391(线段树+剪枝)

    Paint The Wall Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  8. Codeforces 938G 线段树分治 线性基 可撤销并查集

    Codeforces 938G Shortest Path Queries 一张连通图,三种操作 1.给x和y之间加上边权为d的边,保证不会产生重边 2.删除x和y之间的边,保证此边之前存在 3.询问 ...

  9. codeforces 1136E 线段树

    codeforces 1136E: 题意:给你一个长度为n的序列a和长度为n-1的序列k,序列a在任何时候都满足如下性质,a[i+1]>=ai+ki,如果更新后a[i+1]<ai+ki了, ...

随机推荐

  1. java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName'

    java.sql.SQLException: Incorrect string value: '\xE6\x88\x91\xE7\x9A\x84...' for column 'groupName' ...

  2. Emmet:HTML/CSS代码快速编写神器--20150422

    Emmet的前身是大名鼎鼎的Zen coding,如果你从事Web前端开发的话,对该插件一定不会陌生.它使用仿CSS选择器的语法来生成代码,大大提高了HTML/CSS代码编写的速度,比如下面的演示: ...

  3. linux运维中常用的指令

    一.终端中常用的快捷键 man界面中的快捷键: ?keyword                 向上搜索关键词keyword,n向下搜索,N继续向上搜索 /keyword   向下搜索关键词keyw ...

  4. GIMP选择区域Selection Editor

    如图我要选择该图的衣服部分和这个球的部分, 选择Select下的Selection Editor工具,然后点击魔法棒工具(Fuzzy Select Tool),选择衣服: 需要注意以下白色部分是选择的 ...

  5. angular 列表渲染机制

    watchCollection:监听集合元素的变化,而不能监听到集合元素内部的属性变化,只要集合中元素的引用没有发生变化,则认为无变化.用这个api也可以监听普通对象的第一层属性变化. watch:监 ...

  6. 如何用纯 CSS 创作一个雷达扫描动画

    效果预览 在线演示 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/VdbGvr 可交互视频 ...

  7. return_url notify_url

    return_url对返回订单状态进行更新和判断,notify_url为异步调动页面,需要先判断notify_url里是否对订单数据做过处理,避免重复更新数据,然后如果用户付款成功直接关闭页面,会造成 ...

  8. 关于面试总结-linux篇

    前言 现在做测试的出去面试,都会被问到linux,不会几个linux指令都不好意思说自己是做测试的了,本篇收集了几个被问的频率较高的linux面试题 常用指令 1.说出10个linux常用的指令 ls ...

  9. Java 正则表达式详解---https://www.jb51.net/article/16829.htm

    一.正则表达式基础知识 我们先从简单的开始.假设你要搜索一个包含字符“cat”的字符串,搜索用的正则表达式就是“cat”.如果搜索对大小写不敏感,单词“catalog”.“Catherine”.“so ...

  10. HDU 2435 There is a war

    There is a war Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Original ...