CodeChef - CHEFPRAD Chef and Pairs 树形DP
题意
给你一棵由 N 个节点构成的树 T。节点按照 1 到 N 编号,每个节点要么是白色,要么是黑色。有 Q 组询问,每组询问形如 (s, b)。你需要检查是否存在一个连通子图,其大小恰好是 s,并且包含恰好 b 个黑色节点。
数据
输入第一行,包含一个整数 T,表示测试数据组数。对于每组测试数据:
第一行包含两个整数 N 和 Q,分别表示树的节点个数和询问个数。
接下来 N - 1 行,每行包含两个整数 ui 和 vi,表示在树中 ui 和 vi 之间存在一条边。
接下来一行包含 N 个整数,c1, c2, ... , cN。如果 ci 为 0 表示第 i 个节点是白色的,如果 ci 为
1 表示第 i 个节点是黑色的。
接下来 Q 行,每行包含两个整数 si 和 bi,表示一组形如 (si, bi) 的询问。
对于每组询问输出一行字符串表示答案,其中 Yes 表示存在一个符合要求的连
通子图,No 表示不存在。
1 <= T <= 5, 2 <= N <= 5e3, 1 <= Q <= 1e5, 1 <= ui, vi <= N。
0 <= ci <= 1, 0 <= bi <= N, 1 <= si <= N, bi <= si。
输入
1
9 4
4 1
1 5
1 2
3 2
3 6
6 7
6 8
9 6
0 1 0 1 0 0 1 0 1
3 2
7 3
4 0
9 5
输出
Yes
Yes
No
No
说明
对于第一组询问,包含由 {6, 7, 9} 构成的连通子图,其中恰包含两个黑色节点 7 和 9。
对于第二组询问,包含由 {1, 2, 3, 4, 6, 7, 8} 构成的连通子图,其中恰包含三个黑色节点 2,4和 7。
对于第三组询问和第四组询问,均不存在符合要求的连通子图。
题解:
观察到一个现象,对于一个子树,在子树中子图的点数确定的情况下,可行的黑点数是一个连续的区间。
那么很自然地用f[i][j]记下在子树i中用了j个点的情况下最多和最少的黑点数,背包一下就可以了。
剩下一个问题,就是复杂度。你会发现每个点对在dp的过程中都只出现一次,所以复杂度是n^2的。
#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
const long long INF = 1e18+1LL;
const double Pi = acos(-1.0);
const int N = 5e3+, M = 1e3+, mod = 1e9+,inf = 2e9; int f[N][N][],mi[N],mx[N],c[N],siz[N];
int head[N*],t = ;
struct ss{
int next,to;
}e[N * ];
int T,Q,n;
inline void add(int u,int v) {
e[t].to = v;
e[t].next = head[u];
head[u] = t++;
}
void dfs(int u,int fa) {
siz[u] = ;
if(c[u])f[u][][] = f[u][][] = ;
else f[u][][] = f[u][][] = ;
for(int i = head[u]; i; i = e[i].next){
int to = e[i].to;
if(to == fa) continue;
dfs(to,u);
for(int k = siz[u]; k >= ; --k){
for(int j = ; j <= siz[to]; ++j) {
f[u][k+j][] = min(f[u][k+j][],f[u][k][] + f[to][j][]);
f[u][k+j][] = max(f[u][k+j][],f[u][k][] + f[to][j][]);
}
}
siz[u] += siz[to];
}
for(int j = ; j <= siz[u]; ++j)
mi[j] = min(mi[j],f[u][j][]),mx[j] = max(mx[j],f[u][j][]);
}
int main() { scanf("%d",&T); while(T--) { scanf("%d%d",&n,&Q); memset(head,,sizeof(head));
t = ; for(int i = ; i <= n; ++i) mi[i] = inf,mx[i] = ; for(int i = ; i <= n; ++i)
for(int j = ; j <= n; ++j) f[i][j][] = inf,f[i][j][] = ; for(int i = ; i < n; ++i) {
int x,y;
scanf("%d%d",&x,&y);
add(x,y);
add(y,x);
} for(int i = ; i <= n; ++i) scanf("%d",&c[i]); dfs(,); while(Q--) {
int x,y;
scanf("%d%d",&x,&y);
if(mi[x] <= y && mx[x] >= y) {
printf("Yes\n");
}
else printf("No\n");
} }
return ;
}
CodeChef - CHEFPRAD Chef and Pairs 树形DP的更多相关文章
- codeforces 161D Distance in Tree 树形dp
题目链接: http://codeforces.com/contest/161/problem/D D. Distance in Tree time limit per test 3 secondsm ...
- poj3162(树形dp+优先队列)
Walking Race Time Limit: 10000MS Memory Limit: 131072K Total Submissions: 5409 Accepted: 1371 Ca ...
- POJ 3162.Walking Race 树形dp 树的直径
Walking Race Time Limit: 10000MS Memory Limit: 131072K Total Submissions: 4123 Accepted: 1029 Ca ...
- POJ-3659-最小支配集裸题/树形dp
Cell Phone Network Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7127 Accepted: 254 ...
- 【bzoj2591】[Usaco 2012 Feb]Nearby Cows 树形dp
题目描述 Farmer John has noticed that his cows often move between nearby fields. Taking this into accoun ...
- 树的直径的求法即相关证明【树形DP || DFS】
学习大佬:树的直径求法及证明 树的直径 定义: 一棵树的直径就是这棵树上存在的最长路径. 给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间的距 ...
- codeforces766E Mahmoud and a xor trip(按位统计+树形DP)
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- Choosing Capital for Treeland CodeForces - 219D (树形DP)
传送门 The country Treeland consists of n cities, some pairs of them are connected with unidirectional ...
- CF 219 D:Choosing Capital for Treeland(树形dp)
D. Choosing Capital for Treeland 链接:http://codeforces.com/problemset/problem/219/D The country Tre ...
随机推荐
- 【linux 06】 linux中的用户权限、文件权限与目录权限
1.用户及用户组的概念: 1.文件所有者 2.用户组 3.用户 以root登录Linux之后,执行ls -al,会看到有关文件属性的信息 -rw-r--r--,第1个字符代表这个文件是“目录,文件或链 ...
- (二十)python 3 匿名函数
匿名函数lambda Python使用lambda关键字创造匿名函数.所谓匿名,意即不再使用def语句这样标准的形式定义一个函数.这种语句的目的是由于性能的原因,在调用时绕过函数的栈分配.其语法是: ...
- python_装饰器——迭代器——生成器
一.装饰器 1.什么是装饰器? 器=>工具,装饰=>增加功能 1.不修改源代码 2.不修改调用方式 装饰器是在遵循1和2原则的基础上为被装饰对象增加功能的工具 2.实现无参装饰器 1.无参 ...
- 转载 js弹出框、对话框、提示框、弹窗总结
转载:https://blog.csdn.net/huileiforever/article/details/9464659 一.JS的三种最常见的对话框 //================== ...
- ()-servlet.xml中剥离出的hibernate.cfg.xml
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- python出现'module' object is not callable错误
- python017 Python3 模块
Python3 模块在前面的几个章节中我们脚本上是用 python 解释器来编程,如果你从 Python 解释器退出再进入,那么你定义的所有的方法和变量就都消失了.为此 Python 提供了一个办法, ...
- iOS-runtime-根据类名推送到任意控制器,且实现属性传值
// // WJRuntime.m // RuntimeSkip // // Created by tqh on 15/9/8. // Copyright (c) 2015年 tqh. All rig ...
- 在后台根据单据标识构建单据的DynamicObject,然后调用BOS的保存服务保存单据。
var bussnessInfo = Kingdee.BOS.ServiceHelper.MetaDataServiceHelper.GetFormMetaData(this.Context, &qu ...
- 2016 Multi-University Training Contest 4 solutions BY FZU
1001 Another Meaning 对于这个问题,显然可以进行DP: 令dp[i]表示到i结尾的字符串可以表示的不同含义数,那么考虑两种转移: 末尾不替换含义:dp[i - 1] 末尾替换含义: ...