集训队有人提到这个算法,就学习一下,如果用到可以直接贴模板,例题:POJ 1811

转自:http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html

传说中的随机算法。

效率极高。

可以对一个2^63的素数进行判断。

可以分解比较大的数的因子。

 #include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<time.h>
#include<iostream>
#include<algorithm>
using namespace std; //****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=;//随机算法判定次数,S越大,判错概率越小 //计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
a%=c;
b%=c;
long long ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
} //计算 x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
if(n==)return x%mod;
x%=mod;
long long tmp=x;
long long ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
} //以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
long long ret=pow_mod(a,x,n);
long long last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
} // Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false; bool Miller_Rabin(long long n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
long long x=n-;
long long t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
long long a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
} //************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始 long long gcd(long long a,long long b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
long long t=a%b;
a=b;
b=t;
}
return a;
} long long Pollard_rho(long long x,long long c)
{
long long i=,k=;
long long x0=rand()%x;
long long y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
long long d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(long long n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
long long p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
} int main()
{
//srand(time(NULL));//需要time.h头文件//POJ上G++不能加这句话
long long n;
while(scanf("%I64d",&n)!=EOF)
{
tol=;
findfac(n);
for(int i=;i<tol;i++)printf("%I64d ",factor[i]);
printf("\n");
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
return ;
}

【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】的更多相关文章

  1. 大素数判断和素因子分解(miller-rabin,Pollard_rho算法) 玄学快

    大数因数分解Pollard_rho 算法 复杂度o^(1/4) #include <iostream> #include <cstdio> #include <algor ...

  2. 大素数判断和素因子分解(miller-rabin,Pollard_rho算法)

    #include<stdio.h> #include<string.h> #include<stdlib.h> #include<time.h> #in ...

  3. POJ 1811 大素数判断

    数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数. 模板在代码中 O.O #include <iostream> #include <cstdio> #inc ...

  4. HDU 4910 Problem about GCD 找规律+大素数判断+分解因子

    Problem about GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  5. 大素数判断(miller-Rabin测试)

    题目:PolandBall and Hypothesis A. PolandBall and Hypothesis time limit per test 2 seconds memory limit ...

  6. HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解

    链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...

  7. poj 1811 Pallor Rho +Miller Rabin

    /* 题目:给出一个数 如果是prime 输出prime 否则输出他的最小质因子 Miller Rabin +Poller Rho 大素数判定+大数找质因子 后面这个算法嘛 基于Birthday Pa ...

  8. (Miller Rabin算法)判断一个数是否为素数

    1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...

  9. Miller Rabin 大素数测试

    PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...

随机推荐

  1. 【USACO 3.2.2】二进制数01串

    [描述] 考虑排好序的N(N<=31)位二进制数. 你会发现,这很有趣.因为他们是排列好的,而且包含所有可能的长度为N且含有1的个数小于等于L(L<=N)的数. 你的任务是输出第I(1&l ...

  2. 给出2n+1个数,其中有2n个数出现过两次,如何用最简便的方法找出里面只出现了一次的那个数(转载)

    有2n+1个数,其中有2n个数出现过两次,找出其中只出现一次的数 例如这样一组数3,3,1,2,4,2,5,5,4,其中只有1出现了1次,其他都是出现了2次,如何找出其中的1? 最简便的方法是使用异或 ...

  3. Eclipse代码注释模板修改

    /** * @ClassName: ${type_name} * @author: <font color="red"><b>ZF</b>< ...

  4. jQuery键盘控制方法,以及键值(keycode)对照表

    键盘控制应用范围非常广泛,比如快捷键控制页面的滚动:在填写表单时候,限制输入内容:或者是屏蔽复制.粘贴.退后等功能.这里说说用jQuery怎么来实现.个人觉得jQuery比原生态的JS好用,代码简单清 ...

  5. 实现跨线程访问UI控件的3种方法

    namespace 多线程 { public partial class Form2 : Form { public Form2() { InitializeComponent(); } privat ...

  6. oracle常用SQL总结

    这里我们介绍的是 40+ 个非常有用的 Oracle 查询语句,主要涵盖了日期操作,获取服务器信息,获取执行状态,计算数据库大小等等方面的查询.这些是所有 Oracle 开发者都必备的技能,所以快快收 ...

  7. thinkphp 文件下载实例 实现以及注意事项

            #下载        function download()        {             $id=$_GET['id'];              $file_name ...

  8. uva 10976 Fractions Again(简单枚举)

    10976 Fractions Again It is easy to see that for every fraction in the form 1 k (k > 0), we can a ...

  9. Maven插件开发

    Maven为我们提供了丰富的插件资源,使得开发调试过程中非常方便,可以满足大多数场景下的需求.当然有时候,我们也需要根据需求定制自己的插件.下面是在开发Maven插件时的一点备忘录,具体的开发流程请G ...

  10. setNeedsDisplay 和 setNeedsLayout-b

    setNeedsDisplay: Marks the receiver’s entire bounds rectangle as needing to be redrawn. drawRect: Th ...