数据结构(线段树):CodeForces 145E Lucky Queries
3 seconds
256 megabytes
standard input
standard output
Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.
Petya brought home string s with the length of n. The string only consists of lucky digits. The digits are numbered from the left to the right starting with 1. Now Petya should execute m queries of the following form:
- switch l r — "switch" digits (i.e. replace them with their opposites) at all positions with indexes from l to r, inclusive: each digit 4 is replaced with 7 and each digit 7 is replaced with 4 (1 ≤ l ≤ r ≤ n);
- count — find and print on the screen the length of the longest non-decreasing subsequence of string s.
Subsequence of a string s is a string that can be obtained from s by removing zero or more of its elements. A string is called non-decreasing if each successive digit is not less than the previous one.
Help Petya process the requests.
The first line contains two integers n and m (1 ≤ n ≤ 106, 1 ≤ m ≤ 3·105) — the length of the string s and the number of queries correspondingly. The second line contains n lucky digits without spaces — Petya's initial string. Next m lines contain queries in the form described in the statement.
For each query count print an answer on a single line.
2 3
47
count
switch 1 2
count
2
1
3 5
747
count
switch 1 1
count
switch 1 3
count
2
3
2
In the first sample the chronology of string s after some operations are fulfilled is as follows (the sought maximum subsequence is marked with bold):
- 47
- 74
- 74
In the second sample:
- 747
- 447
- 447
- 774
- 774
比较好写……
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
char s[maxn];
int num[maxn],Mark[maxn<<];
int M1[maxn<<],M2[maxn<<];
int M3[maxn<<],M4[maxn<<];
int tot[maxn<<],n,Q;
//M1:00 M2:11 M3:01 M4:10 void Swich(int x){
swap(M1[x],M2[x]);
swap(M3[x],M4[x]);
Mark[x]^=;
} void Push_down(int x,int l,int r){
if(!Mark[x]||l==r)return;
Swich(x<<);Swich(x<<|);
Mark[x]=;
} void Push_up(int x){
M1[x]=M1[x<<]+M1[x<<|];
M2[x]=M2[x<<]+M2[x<<|];
M3[x]=max(M1[x<<]+M2[x<<|],max(M1[x<<]+M3[x<<|],M3[x<<]+M2[x<<|]));
M4[x]=max(M2[x<<]+M1[x<<|],max(M4[x<<]+M1[x<<|],M2[x<<]+M4[x<<|]));
} void Build(int x,int l,int r){
if(l==r){
M1[x]=num[l]^;
M2[x]=num[l];
return;
}
int mid=(l+r)>>;
Build(x<<,l,mid);
Build(x<<|,mid+,r);
Push_up(x);
} void Update(int x,int l,int r,int a,int b){
Push_down(x,l,r);
if(l>=a&&r<=b){
Swich(x);
return;
}
int mid=(l+r)>>;
if(mid>=a)Update(x<<,l,mid,a,b);
if(mid<b)Update(x<<|,mid+,r,a,b);
Push_up(x);
} char op[];
int main(){
scanf("%d%d",&n,&Q);
scanf("%s",s+);
for(int i=;i<=n;i++){
num[i]=s[i]==''?:;
}
Build(,,n);
int a,b;
while(Q--){
scanf("%s",op);
if(op[]=='s'){
scanf("%d%d",&a,&b);
Update(,,n,a,b);
}
else
printf("%d\n",max(max(M1[],M2[]),M3[]));
}
return ;
}
数据结构(线段树):CodeForces 145E Lucky Queries的更多相关文章
- Codeforces 145E Lucky Queries 线段树
Lucky Queries 感觉是很简单的区间合并, 但是好像我写的比较麻烦. #include<bits/stdc++.h> #define LL long long #define f ...
- 算法手记 之 数据结构(线段树详解)(POJ 3468)
依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不 ...
- 线段树 Codeforces Round #197 (Div. 2) D. Xenia and Bit Operations
题目传送门 /* 线段树的单点更新:有一个交叉更新,若rank=1,or:rank=0,xor 详细解释:http://www.xuebuyuan.com/1154895.html */ #inclu ...
- set+线段树 Codeforces Round #305 (Div. 2) D. Mike and Feet
题目传送门 /* 题意:对于长度为x的子序列,每个序列存放为最小值,输出长度为x的子序列的最大值 set+线段树:线段树每个结点存放长度为rt的最大值,更新:先升序排序,逐个添加到set中 查找左右相 ...
- [线段树]Codeforces 339D Xenia and Bit Operations
Xenia and Bit Operations time limit per test 2 seconds memory limit per test 256 megabytes input sta ...
- ACM/ICPC 之 数据结构-线段树+区间离散化(POJ2528)
这道题用线段树做更方便更新和查询,但是其数据范围很大,因此要将离散化和线段树结合起来,算是一道比较经典的线段树+离散化的例题. 线段树的离散化有很多方法,在这里,我先用一次结点离散化,间接将源左右端点 ...
- ACM/ICPC 之 数据结构-线段树思想(POJ2182,含O(n^2)插入式解法)
这道题在一定程度上体现了线段树的一种用法,解决的问题是:对于总计n个元素的第i个元素,已知其在[1,i]上部分序列的排名,求第i个元素在所有n个元素中的排名. 当然这道题数据比较水,所以用O(n^2) ...
- 模板 - 数据结构 - 线段树/SegmentTree
区间求加法和: 单点修改的,普通线段树. struct SegmentTree { #define ls (o<<1) #define rs (o<<1|1) static c ...
- 第二十九篇 玩转数据结构——线段树(Segment Tree)
1.. 线段树引入 线段树也称为区间树 为什么要使用线段树:对于某些问题,我们只关心区间(线段) 经典的线段树问题:区间染色,有一面长度为n的墙,每次选择一段墙进行染色(染色允许覆盖),问 ...
随机推荐
- Python 记录(一)
一开始没发现3.5与2.x版本的区别,导致浪费了很多时间在导包等问题上: 如: Pyhton2中的urllib2工具包,在Python3中分拆成了urllib.request和urllib.error ...
- 常用的 css 命名规则
头:header 内容:content/container 尾:footer 导航:nav 侧栏:sidebar 栏目:column 页面外围控制整体布局宽度:wrapper 左右中:left rig ...
- Android中Cursor类的概念和用法
http://blog.sina.com.cn/s/blog_618199e60101fskp.html 使用过 SQLite数据库的童鞋对 Cursor 应该不陌生,加深自己和大家对Android ...
- apache httpd配置ajp报错:ap_proxy_connect_backend disabling worker for (localhost)
报错信息: (13)Permission denied: proxy: AJP: attempt to connect to 127.0.0.1:9019 (localhost) failed[Wed ...
- CouchBase 遇到问题笔记(一)
刚开始看CouchBase,按照官网给出的示例,边敲边理解,遇到了一个很奇怪的问题,如下代码: IView<IViewRow> view = client.GetView("be ...
- 数据库连接报错之IO异常(The Network Adapter could not establish the connection)
Io 异常: The Network Adapter could not establish the connection 有以下四个原因: 1.oracle配置 listener.ora 和tnsn ...
- LA 6856 Circle of digits 解题报告
题目链接 先用后缀数组给串排好序.dc3 O(n) 二分答案+贪心check 答案的长度len=(n+k-1)/k 如果起点为i长为len串大于当前枚举的答案,i的长度取len-1 从起点判断k个串的 ...
- hibernate加载实体映射文件 及映射文件auto-import
第一种方法: 在hibernate.cfg.xml中<mapping resource="包名/Xxx.hbm.xml"/>包名为路径形式( x/x/x这种形式) 第二 ...
- Ubuntu Apache 伪静态配置 url重写 步骤
1.加载rewrite模块sudo ln -s /etc/apache2/mods-available/rewrite.load /etc/apache2/mods-enabled/rewrite.l ...
- input里面的查找标记 ő
<i id="J_SearchIcon" class="iconfont">ő</i> .iconfont {ont-family: i ...