E. Lucky Queries
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Petya loves lucky numbers very much. Everybody knows that lucky numbers are positive integers whose decimal record contains only the lucky digits 4 and 7. For example, numbers 47, 744, 4 are lucky and 5, 17, 467 are not.

Petya brought home string s with the length of n. The string only consists of lucky digits. The digits are numbered from the left to the right starting with 1. Now Petya should execute m queries of the following form:

  • switch l r — "switch" digits (i.e. replace them with their opposites) at all positions with indexes from l to r, inclusive: each digit 4 is replaced with 7 and each digit 7 is replaced with 4 (1 ≤ l ≤ r ≤ n);
  • count — find and print on the screen the length of the longest non-decreasing subsequence of string s.

Subsequence of a string s is a string that can be obtained from s by removing zero or more of its elements. A string is called non-decreasing if each successive digit is not less than the previous one.

Help Petya process the requests.

Input

The first line contains two integers n and m (1 ≤ n ≤ 106, 1 ≤ m ≤ 3·105) — the length of the string s and the number of queries correspondingly. The second line contains n lucky digits without spaces — Petya's initial string. Next m lines contain queries in the form described in the statement.

Output

For each query count print an answer on a single line.

Examples
Input
2 3
47
count
switch 1 2
count
Output
2
1
Input
3 5
747
count
switch 1 1
count
switch 1 3
count
Output
2
3
2
Note

In the first sample the chronology of string s after some operations are fulfilled is as follows (the sought maximum subsequence is marked with bold):

  1. 47
  2. 74
  3. 74

In the second sample:

  1. 747
  2. 447
  3. 447
  4. 774
  5. 774

  比较好写……

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
char s[maxn];
int num[maxn],Mark[maxn<<];
int M1[maxn<<],M2[maxn<<];
int M3[maxn<<],M4[maxn<<];
int tot[maxn<<],n,Q;
//M1:00 M2:11 M3:01 M4:10 void Swich(int x){
swap(M1[x],M2[x]);
swap(M3[x],M4[x]);
Mark[x]^=;
} void Push_down(int x,int l,int r){
if(!Mark[x]||l==r)return;
Swich(x<<);Swich(x<<|);
Mark[x]=;
} void Push_up(int x){
M1[x]=M1[x<<]+M1[x<<|];
M2[x]=M2[x<<]+M2[x<<|];
M3[x]=max(M1[x<<]+M2[x<<|],max(M1[x<<]+M3[x<<|],M3[x<<]+M2[x<<|]));
M4[x]=max(M2[x<<]+M1[x<<|],max(M4[x<<]+M1[x<<|],M2[x<<]+M4[x<<|]));
} void Build(int x,int l,int r){
if(l==r){
M1[x]=num[l]^;
M2[x]=num[l];
return;
}
int mid=(l+r)>>;
Build(x<<,l,mid);
Build(x<<|,mid+,r);
Push_up(x);
} void Update(int x,int l,int r,int a,int b){
Push_down(x,l,r);
if(l>=a&&r<=b){
Swich(x);
return;
}
int mid=(l+r)>>;
if(mid>=a)Update(x<<,l,mid,a,b);
if(mid<b)Update(x<<|,mid+,r,a,b);
Push_up(x);
} char op[];
int main(){
scanf("%d%d",&n,&Q);
scanf("%s",s+);
for(int i=;i<=n;i++){
num[i]=s[i]==''?:;
}
Build(,,n);
int a,b;
while(Q--){
scanf("%s",op);
if(op[]=='s'){
scanf("%d%d",&a,&b);
Update(,,n,a,b);
}
else
printf("%d\n",max(max(M1[],M2[]),M3[]));
}
return ;
}

数据结构(线段树):CodeForces 145E Lucky Queries的更多相关文章

  1. Codeforces 145E Lucky Queries 线段树

    Lucky Queries 感觉是很简单的区间合并, 但是好像我写的比较麻烦. #include<bits/stdc++.h> #define LL long long #define f ...

  2. 算法手记 之 数据结构(线段树详解)(POJ 3468)

    依然延续第一篇读书笔记,这一篇是基于<ACM/ICPC 算法训练教程>上关于线段树的讲解的总结和修改(这本书在线段树这里Error非常多),但是总体来说这本书关于具体算法的讲解和案例都是不 ...

  3. 线段树 Codeforces Round #197 (Div. 2) D. Xenia and Bit Operations

    题目传送门 /* 线段树的单点更新:有一个交叉更新,若rank=1,or:rank=0,xor 详细解释:http://www.xuebuyuan.com/1154895.html */ #inclu ...

  4. set+线段树 Codeforces Round #305 (Div. 2) D. Mike and Feet

    题目传送门 /* 题意:对于长度为x的子序列,每个序列存放为最小值,输出长度为x的子序列的最大值 set+线段树:线段树每个结点存放长度为rt的最大值,更新:先升序排序,逐个添加到set中 查找左右相 ...

  5. [线段树]Codeforces 339D Xenia and Bit Operations

    Xenia and Bit Operations time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  6. ACM/ICPC 之 数据结构-线段树+区间离散化(POJ2528)

    这道题用线段树做更方便更新和查询,但是其数据范围很大,因此要将离散化和线段树结合起来,算是一道比较经典的线段树+离散化的例题. 线段树的离散化有很多方法,在这里,我先用一次结点离散化,间接将源左右端点 ...

  7. ACM/ICPC 之 数据结构-线段树思想(POJ2182,含O(n^2)插入式解法)

    这道题在一定程度上体现了线段树的一种用法,解决的问题是:对于总计n个元素的第i个元素,已知其在[1,i]上部分序列的排名,求第i个元素在所有n个元素中的排名. 当然这道题数据比较水,所以用O(n^2) ...

  8. 模板 - 数据结构 - 线段树/SegmentTree

    区间求加法和: 单点修改的,普通线段树. struct SegmentTree { #define ls (o<<1) #define rs (o<<1|1) static c ...

  9. 第二十九篇 玩转数据结构——线段树(Segment Tree)

          1.. 线段树引入 线段树也称为区间树 为什么要使用线段树:对于某些问题,我们只关心区间(线段) 经典的线段树问题:区间染色,有一面长度为n的墙,每次选择一段墙进行染色(染色允许覆盖),问 ...

随机推荐

  1. css(display,float,position)

    display 用来设置元素的显示方式 display : block | none | inline | inline-block inline:指定对象为内联元素 block:指定对象为块元素 i ...

  2. 使用CDN加载jQuery类库后备代码

    <script src="https://ajax.googleapis.com/ajax/libs/jquery/1.4.3/jquery.min.js"></ ...

  3. 很好用的Tab标签切换功能,延迟Tab切换。

    一个网页,Tab标签的切换是常见的功能,但我发现很少有前端工程师在做该功能的时候,会为用户多想想,如果你觉得鼠标hover到标签上,然后切换到相应的内容,就那么简单的话,你将是一个不合格的前端工程师啊 ...

  4. 基于slf4j的log4j实战

    参考文档如下: http://blog.csdn.net/anialy/article/details/8529188 slf4j是接口,基于门面模式,可以实现log4j和logback 参考文档如下 ...

  5. jdbc mysql - Column count doesn't match value count at row 1.

    该句的意思是,insert操作的SQL语句里列的数目和后面值的数目不一致.比如说, String sql = "insert into t_aqi(city_name, cur_date, ...

  6. mksquash_lzma-3.2 编译调试记录

    今天在编译mksquash_lzma-3.2的时候出现了如下问题: /home/test/RT288x_SDK/toolchain/mksquash_lzma-3.2/lzma443/C/7zip/C ...

  7. javascript基础学习(九)

    javascript之基本包装类型 学习要点: 基本包装类型概述 Boolean类型 Number类型 String类型 一.基本包装类型概述 为了便于操作基本类型值,提供了3种特殊的引用类型:Boo ...

  8. set,multiset容器类型

    set和multiset会根据特定的排序准则,自动将元素排序.两者不同处在于multiset允许元素重复而set不允许. 一.集和多集(set 和multiset 容器类) 在使用set和multis ...

  9. php开发利器

    phpstorm 当前版本2016.1 之前用的为Zend studio,比之notepad++确实方便很多,不过很多方面还是不方便的,比如定位文件,上传下载到svn什么的. 看到phpstorm新版 ...

  10. C# ToString常用技巧总结

    ToString是在开发中最常用的操作,其作用是将其它类型以字符串类型表示.例如: int i=2;i.ToString() //”2″Object o = new Object();o.ToStri ...