1976: [BeiJing2010组队]能量魔方 Cube

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 879  Solved: 304
[Submit][Status][Discuss]

Description

小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量。 能量魔方是一个 N*N*N 的立方体,一共用 N3 个空格可以填充能量水晶。 能量水晶有两种: ·一种是正能量水晶(Positive) ·一种是负能量水晶(Negative) 当这个魔方被填满后,就会依据填充的能量水晶间的关系产生巨大能量。对 于相邻两(相邻就是拥有同一个面)的两个格子,如果这两个格子填充的是一正一 负两种水晶,就会产生一单位的能量。而整个魔方的总能量,就是这些产生的能 量的总和。 现在,小 C 已经在魔方中填充了一些水晶,还有一些位置空着。他想知道, 如果剩下的空格可以随意填充,那么在最优情况下,这个魔方可以产生多少能量。 

Input

第一行包含一个数N,表示魔方的大小。 接下来 N2 行,每行N个字符,每个字符有三种可能: P:表示此方格已经填充了正能量水晶; N:表示此方格已经填充了负能量水晶; ?:表示此方格待填充。 上述 N*N 行,第(i-1)*N+1~i*N 行描述了立方体第 i 层从前到后,从左到右的 状态。且每 N 行间,都有一空行分隔。 

Output

仅包含一行一个数,表示魔方最多能产生的能量

Sample Input

2
P?
??

??
N?

Sample Output

9

HINT

如下状态时,可产生最多的能量。 
PN 
NP

NP 
NN

【数据规模】 
10% 的数据N≤3; 
30% 的数据N≤4; 
80% 的数据N≤10; 
100% 的数据N≤40。

Source

题解:

最小割,思路很好。

我们可以发现这道题与之前的几道题略有不同,这里是两个格子所属类别不同时获得某种收益。所以我们单纯地按照两个类别建立源点和汇点,连边求最小割就行不通了。

那怎么办呢?能不能还用最小割解决呢?

答案当然是能,不然我第一行为什么会写“最小割”三个字…2333

我们考虑能不能有一种方案,让任意两个相邻格子颜色都不同。当然是可以的,只要对一个n*n*n的立方体黑白染色就可以了。对于黑色,我们用s表示positive,t表示negative;相反地,对于白色,用s表示negative,t表示positive。这样,我们就把所属与不同类别转化为所属相同类别。是不是很机智啊!

但是题目中是有限定条件的,也就是有些点的类别是固定的,这也很好办。比如说对于黑色,如果已经确定为positive,连边(s,i,inf);如果已经确定为negative,连边(i,t,inf)。因为inf的边一定不会成为割,也就保证了i节点一定属于s割或者t割,即保证了它是positive或者negative。白色同理。

然后对于任意两个相邻格子i和j,连边(i,j,1)(j,i,1)。

最后跑一次最小割,从总收益中减去最小割即为答案。

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
#define MAXN 64020
#define INF 1e9
struct node
{
int begin,end,value,next;
}edge[*MAXN];
int cnt,Head[MAXN],S,T,dis[MAXN],q[MAXN],n,cur[MAXN]; void addedge(int bb,int ee,int vv)
{
edge[++cnt].begin=bb;edge[cnt].end=ee;edge[cnt].value=vv;edge[cnt].next=Head[bb];Head[bb]=cnt;
}
void addedge1(int bb,int ee,int vv)
{
addedge(bb,ee,vv);addedge(ee,bb,);
}
int xyz(int x,int y,int z){return (x-)*n*n+(y-)*n+z;}
int BFS()
{
int head,tail,i,u,v;
head=;tail=;q[tail]=S;
memset(dis,-,sizeof(dis));dis[S]=;//0打成-1了。。。改死我了。。。
while(head!=tail)
{
head++;if(head==)head=;
u=q[head];
for(i=Head[u];i!=-;i=edge[i].next)
{
v=edge[i].end;
if(edge[i].value>&&dis[v]<)
{
dis[v]=dis[u]+;
tail++;if(tail==)tail=;
q[tail]=v;
}
}
}
if(dis[T]<=)return ;
else return ;
}
int DFS(int u,int minflow)
{
int used=,ans=,i,v;
if(u==T)return minflow;
for(i=Head[u];i!=-;i=edge[i].next)
{
v=edge[i].end;
if(edge[i].value>&&dis[v]==dis[u]+)
{
ans=minflow-used;
ans=DFS(v,min(ans,edge[i].value));
edge[i].value-=ans;
edge[i^].value+=ans;
used+=ans;
if(used==minflow)return minflow;
}
}
if(used==)dis[u]=-;
return used;
}
int Dinic()
{
int maxflow=,ans=,i;
while(BFS()){for(i=;i<=T;i++)cur[i]=Head[i];ans=DFS(S,INF);if(ans==)break;maxflow+=ans;}
return maxflow;
}
int main()
{
int i,j,k,XYZ,ans;
char ch;
scanf("%d",&n);
S=n*n*n+;T=S+;//S代表和正能量水晶连,T代表和负能量水晶连.
memset(Head,-,sizeof(Head));cnt=;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
for(k=;k<=n;k++)
{
if(i!=n)addedge1(xyz(i,j,k),xyz(i+,j,k),);
if(j!=n)addedge1(xyz(i,j,k),xyz(i,j+,k),);
if(k!=n)addedge1(xyz(i,j,k),xyz(i,j,k+),);
if(i!=)addedge1(xyz(i,j,k),xyz(i-,j,k),);
if(j!=)addedge1(xyz(i,j,k),xyz(i,j-,k),);
if(k!=)addedge1(xyz(i,j,k),xyz(i,j,k-),);
}
}
}
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
{
scanf("\n");
for(k=;k<=n;k++)
{
scanf("%c",&ch);
XYZ=xyz(i,j,k);
if((i+j+k)%==)//黑白染色.
{
if(ch=='P')addedge1(S,XYZ,INF);
else if(ch=='N')addedge1(XYZ,T,INF);
//else addedge1(S,XYZ,INF);
}
else
{
if(ch=='P')addedge1(XYZ,T,INF);
else if(ch=='N')addedge1(S,XYZ,INF);
//else addedge1(XYZ,T,INF);
}
}
}
if(i!=n)scanf("\n");
}
ans=Dinic();
printf("%d",*n*n*(n-)-ans);
fclose(stdin);
fclose(stdout);
return ;
// while(1) getchar();
//getchar();
}

Bzoj 1976: [BeiJing2010组队]能量魔方 Cube 最小割,最大流的更多相关文章

  1. 【BZOJ1976】[BeiJing2010组队]能量魔方 Cube 最小割

    [BZOJ1976][BeiJing2010组队]能量魔方 Cube Description 小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量. 能 ...

  2. BZOJ1976: [BeiJing2010组队]能量魔方 Cube

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 832  Solved: 281[Submi ...

  3. 【BZOJ-1976】能量魔方Cube 最小割 + 黑白染色

    1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 884  Solved: 307[Submi ...

  4. 【bzoj1976】[BeiJing2010组队]能量魔方 Cube 网络流最小割

    题目描述 一个n*n*n的立方体,每个位置为0或1.有些位置已经确定,还有一些需要待填入.问最后可以得到的 相邻且填入的数不同的点对 的数目最大. 输入 第一行包含一个数N,表示魔方的大小. 接下来 ...

  5. hdu4289 最小割最大流 (拆点最大流)

    最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Descript ...

  6. 【BZOJ-1797】Mincut 最小割 最大流 + Tarjan + 缩点

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit] ...

  7. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  8. hdu1569 方格取数(2) 最大点权独立集=总权和-最小点权覆盖集 (最小点权覆盖集=最小割=最大流)

    /** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge ...

  9. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

随机推荐

  1. vim plugin 原理

    vim 个性化设置与功能扩展均通过 script 来实现,这种 script 又叫 plugin.plugin 是 vim 的核心与精髓. 最常用的配置文件 vimrc,也是一种 plugin.换句话 ...

  2. shell中case的用法学习笔记

    这篇文章主要为大家介绍shell中的case语句:可以把变量的内容与多个模板进行匹配,再根据成功匹配的模板去决定应该执行哪部分代码. 本文转自:http://www.jbxue.com/article ...

  3. win7 64位Apache http server+PHP配置

    一.下载PHP 1.首先下载apache http server(我本来是想在官网下载,但是找半天也没找到,于是就在网上下了一个老版本的)我是在这个网址下载的:http://download.csdn ...

  4. Vcl.FileCtrl.SelectDirectory

    描述:显示一个目录的对话框(属于Delphi) function SelectDirectory(var Directory: string; Options: TSelectDirOpts; Hel ...

  5. letcode刷题之两数相加

    letcode里面刷题,坑还是链表不熟,(1)头结点还是有必要设置,否则返回的时候找不到位置:(2)先设置next到新节点再next到下一个节点:都是基础知识 /* * * You are given ...

  6. C# 获取随机可用端口号

    TCP与UDP段结构中端口地址都是16比特,可以有在0---65535范围内的端口号.对于这65536个端口号有以下的使用规定: (1)端口号小于256的定义为常用端口,服务器一般都是通过常用端口号来 ...

  7. Castle ActiveRecord配置中需要注意的地方

    关于Castle 的开发可参考李会军老师的Castle 开发系列文章,里面有关于ActiveRecord学习实践系列和Castle IOC容器系列两个部分,是比较好的教程. 这里主要说明在Castle ...

  8. UIVIewController自定义切换效果-b

      之前介绍动画时提过UIView的转场动画,但是开发中我们碰到更多的viewController的切换,ios中常见的viewcontroller切换有四种:模态视图,导航栏控制器,UITabBar ...

  9. matplotlib 显示中文

    # --*-- coding: utf-8 --*-- from matplotlib.font_manager import FontProperties import matplotlib.pyp ...

  10. NCPC 2012 Bread Sorting

    逆序对数的应用: 逆序对数的写法有,二分,树状数组,分治: 学习一下: 树状数组版: 代码: #include<cstdio> #include<cstring> #inclu ...