一次放下n个圆

问最终可见的圆的数量

应该是比较经典的问题吧

考虑一个圆与其他每个圆的交点O(n)个

将其割成了O(n)条弧

那么看每条弧的中点 分别向内向外调动eps这个点 则最上面的覆盖这个点的圆可见O(n)

总时间复杂度O(n ** 3)

怕炸精度,代码基本抄的rjl的

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<vector> using namespace std; typedef double data_type; const data_type eps = * 1e-;
int dcmp(const data_type& x) {
if(fabs(x) < ) return ; return x < ? - : ;
} const data_type pi = acos(-1.0), dpi = * acos(-1.0); double NormalizeAngle(double rad) {
return rad - dpi * floor(rad / dpi);
} typedef const struct Point& Point_cr;
typedef struct Point {
data_type x, y;
Point() {}
Point(data_type x, data_type y) : x(x), y(y) {}
Point operator + (Point_cr rhs) const {
return Point(x + rhs.x, y + rhs.y);
}
Point operator - (Point_cr rhs) const {
return Point(x - rhs.x, y - rhs.y);
}
Point operator * (data_type k) const {
return Point(x * k, y * k);
}
Point operator / (double k) const {
return Point(x / k, y / k);
}
double length() const {
return hypot(x, y);
}
double angle() const {
return atan2(y, x);
}
}Vector; double Dot(const Vector& v1, const Vector& v2) {
return v1.x * v2.x + v1.y * v2.y;
} double length(const Vector& v) {
return sqrt(Dot(v, v));
} typedef const Vector& Vector_cr;
void CircleCircleIntersection(Point_cr c1, double r1, Point c2, double r2, vector<double> &rad) {
double d = (c1 - c2).length();
if(dcmp(d) == ) return;
if(dcmp(r1 + r2 - d) < ) return;
if(dcmp(fabs(r1 - r2) - d) > ) return;
double a = (c2 - c1).angle();
double da = acos((r1 * r1 + d * d - r2 * r2) / ( * r1 * d));
rad.push_back(NormalizeAngle(a + da));
rad.push_back(NormalizeAngle(a - da));
} const int N = + ;
int n;
Point centre[N];
double radius[N];
bool vis[N]; int topmost(Point p) {
for(int i = n - ; i >= ; i--) {
if((centre[i] - p).length() < radius[i]) return i;
}
return -;
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif while(scanf("%d", &n) == && n) {
for(int i = ; i < n; i++) {
double x, y, r;
scanf("%lf%lf%lf", &x, &y, &r);
centre[i] = Point(x, y);
radius[i] = r;
}
memset(vis, , sizeof vis);
for(int i = ; i < n; i++) {
vector<double> rad;
rad.push_back();
rad.push_back(dpi); for(int j = ; j < n; j++) {
CircleCircleIntersection(centre[i], radius[i], centre[j], radius[j], rad);
} sort(rad.begin(), rad.end()); for(unsigned j = ; j < rad.size(); j++) {
double mid = (rad[j] + rad[j+]) / 2.0;
for(int side = -; side <= ; side += ) {
double r2 = radius[i] - side * eps;
int t = topmost(Point(centre[i].x + cos(mid) * r2, centre[i].y + sin(mid) * r2));
if(t >= ) vis[t] = ;
}
}
}
int ans = ;
for(int i = ; i < n; i++) if(vis[i]) {
ans++;
}
printf("%d\n", ans);
} return ;
}

UVaLive2572 poj1418 UVa1308 Viva Confetti的更多相关文章

  1. poj1418 Viva Confetti 判断圆是否可见

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud Viva Confetti Time Limit: 1000MS   Memory ...

  2. poj 1418 Viva Confetti

    Viva Confetti Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1025   Accepted: 422 Desc ...

  3. ZOJ 1696 Viva Confetti 计算几何

    计算几何:按顺序给n个圆覆盖.问最后能够有几个圆被看见.. . 对每一个圆求和其它圆的交点,每两个交点之间就是可能被看到的圆弧,取圆弧的中点,往外扩展一点或者往里缩一点,从上往下推断有没有圆能够盖住这 ...

  4. uva 2572 Viva Confetti

    思路: 小圆面是由小圆弧围成.那么找出每条小圆弧,如果小圆弧,在小圆弧中点上下左右进行微小位移的所得的点一定在一个小圆面内. 找到最后覆盖这个小点的圆一定是可见的. 圆上的点按照相邻依次排序的关键量为 ...

  5. uva 1308 - Viva Confetti

    这个题目的方法是将圆盘分成一个个圆环,然后判断这些圆环是否被上面的圆覆盖: 如果这个圆的圆周上的圆弧都被上面的覆盖,暂时把它标记为不可见: 然后如果他的头上有个圆,他有个圆弧可见,那么他自己本身可见, ...

  6. LA2572 Viva Confetti

    题意 PDF 分析 两两圆求交点,对每个圆弧按半径抖动. 时间复杂度\(O(T n^2)\) 代码 #include<iostream> #include<cstdio> #i ...

  7. [GodLove]Wine93 Tarining Round #9

    比赛链接: http://vjudge.net/contest/view.action?cid=48069#overview 题目来源: lrj训练指南---二维几何计算   ID Title Pro ...

  8. POJ 1418 基本操作和圆 离散弧

    Viva Confetti Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 761   Accepted: 319 Descr ...

  9. Thesis Viva checklist

    This list gives you suggestions helpful in preparing to defend your thesis: I know my thesis thoroug ...

随机推荐

  1. QT UI 使一个QWidget里面的元素自动填充满本QWidget

    使一个QWidget里面的元素自动填充满本QWidget: 对象查看器,右键点击本QWidget,选择"布局",为此QWidget增加一个布局. 如果该QWidget只有一个对象, ...

  2. 24种设计模式--桥梁模式【Bridge Pattern】

    今天我要说说我自己,梦想中的我自己,我身价过亿,有两个大公司,一个是房地产公司,一个是服装制造业,这两个公司都很赚钱,天天帮我在累加财富,其实是什么公司我倒是不关心,我关心的是是不是在赚钱,赚了多少, ...

  3. ES 的CRUD 简单操作(小试牛刀)

    URL的格式: http://localhost:9200/<index>/<type>/[<id>] 其中index.type是必须提供的. id是可选的,不提供 ...

  4. DOM中的范围 createRange()

    学习<JavaScript 高级程序设计> 12章dom范围的笔记 dom2级在Document类型中定义了 createRange()方法: 创建range对象很简单 var range ...

  5. Thrift 使用方法

  6. CodeforcesGym101116 B Bulbs

    Description Greg has an \(m \times n\) grid of Sweet Lightbulbs of Pure Coolness he would like to tu ...

  7. 投稿前必备的cover letter

  8. Ireport 报表导出 Poi + ireport 导出pdf, word ,excel ,htm

    Ireport 报表导出 Poi + ireport 导出pdf, doc ,excel ,html 格式 下面是报表导出工具类reportExportUtils 需要导出以上格式的报表 只需要调用本 ...

  9. Greg and Array

    Codeforces Round #179 (Div. 2) C:http://codeforces.com/problemset/problem/296/C 题意:给你一个序列,然后有两种操作,第一 ...

  10. 在线CSS圆角生成器

    http://www.paibaidu.com/demo/CSSBorder/CSSBorder.html