S-Nim
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 3694   Accepted: 1936

Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

  • The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
  • The players take turns chosing a heap and removing a positive number of beads from it.
  • The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:

  • Xor
    the number of beads in the heaps in the current position (i.e. if we
    have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
  • If the xor-sum is 0, too bad, you will lose.
  • Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

  • The player that takes the last bead wins.
  • After the winning player's last move the xor-sum will be 0.
  • The xor-sum will change after every move.

Which
means that if you make sure that the xor-sum always is 0 when you have
made your move, your opponent will never be able to win, and, thus, you
will win.

Understandibly it is no fun to play a game when both players know
how to play perfectly (ignorance is bliss). Fourtunately, Arthur and
Caroll soon came up with a similar game, S-Nim, that seemed to solve
this problem. Each player is now only allowed to remove a number of
beads in some predefined set S, e.g. if we have S = {2, 5} each player
is only allowed to remove 2 or 5 beads. Now it is not always possible to
make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of
S-Nim is a losing or a winning position. A position is a winning
position if there is at least one move to a losing position. A position
is a losing position if there are no moves to a losing position. This
means, as expected, that a position with no legal moves is a losing
position.

Input

Input consists of a number of test cases.

For each test case: The first line contains a number k (0 < k ≤
100) describing the size of S, followed by k numbers si (0 < si ≤
10000) describing S. The second line contains a number m (0 < m ≤
100) describing the number of positions to evaluate. The next m lines
each contain a number l (0 < l ≤ 100) describing the number of heaps
and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the
heaps.

The last test case is followed by a 0 on a line of its own.

Output

For
each position: If the described position is a winning position print a
'W'.If the described position is a losing position print an 'L'.

Print a newline after each test case.

Sample Input

2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output

LWW
WWL

Source

【思路】

SG函数。

裸ti ,注意下sg和vis的大小就好了 :)

【代码】

 #include<cstdio>
#include<cstring>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; int n,m,a[],sg[]; int dfs(int x) {
if(sg[x]!=-) return sg[x];
if(!x) return sg[x]=;
int vis[]; //size of [si]
memset(vis,,sizeof(vis));
FOR(i,,n)
if(x>=a[i]) vis[dfs(x-a[i])]=;
for(int i=;;i++)
if(!vis[i]) return sg[x]=i;
} int main() {
while(scanf("%d",&n)== && n) {
FOR(i,,n) scanf("%d",&a[i]);
scanf("%d",&m);
memset(sg,-,sizeof(sg));
FOR(i,,m) {
int x,v,ans=;
scanf("%d",&x);
FOR(j,,x)
scanf("%d",&v) , ans^=dfs(v);
if(ans) printf("W");
else printf("L");
}
putchar('\n');
}
return ;
}

poj 2960 S-Nim(SG函数)的更多相关文章

  1. POJ 2960 S-Nim 博弈论 sg函数

    http://poj.org/problem?id=2960 sg函数几乎是模板题. 调试代码的最大障碍仍然是手残在循环里打错变量名,是时候换个hydra产的机械臂了[超想要.jpg] #includ ...

  2. HDU3544 Alice's Game && POJ 2960 S-Nim(SG函数)

    题意: 有一块xi*Yi的矩形巧克力,Alice只允许垂直分割巧克力,Bob只允许水平分割巧克力.具体来说,对于Alice,一块巧克力X i * Y i,只能分解成a * Y i和b * Y i其中a ...

  3. poj 2960 S-Nim【SG函数】

    预处理出SG函数,然后像普通nim一样做即可 #include<iostream> #include<cstdio> using namespace std; const in ...

  4. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  6. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  7. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  8. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  9. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

随机推荐

  1. C#调用ActiveX控件

    背景:最近项目中需要用到ActiveX控件,项目是在.Net平台下开发的.因此就直接在项目中添加了对ActiveX控件的引用,添加引用成功.在代码中实例化类的实例也没有问题,但在调用其方法或属性时总是 ...

  2. 一款jquery小插件:实现轻松获取和绑定编辑表单的值(带源码)

    实现目的:通常在项目中,编辑页面在前后台需要一个一个框赋值,取值操作,小伙伴们普遍都会感觉繁琐,麻烦.: 实现思路:利用json对象化键值的思想: 好处:方便快速开发,提高开发效率,减少重复性代码: ...

  3. SSH整合笔记

    SSH:spring+struts+hibernate. 一:所需jar: 需要注意的是: hibernate+spring需要Spring-orm-xxx.jar struts+spring需要st ...

  4. Java学习----类的组织(包)

    1.包的概念 javac Engine.java -d . package:打包,把类文件编译成class文件会把Engine.class 放到com/cindy/pkg1/目录下 运行Engine ...

  5. 不同的路径 II

    class Solution { public: /** * @param obstacleGrid: A list of lists of integers * @return: An intege ...

  6. O(1)检测2的幂次

    class Solution { public: /* * @param n: An integer * @return: True or false */ bool checkPowerOf2(in ...

  7. Go语言探险思考笔记

    最近接触对象存储,国际上鼎鼎有名的Amazon S3还有Google Cloud Service在国内由于防火墙还有机房过远的问题,并不能投入生产使用.国内有名的对象存储,大家众所周知的七牛云,后台就 ...

  8. apache的ab进行页面的压力测试

    参考http://www.cnblogs.com/yjf512/archive/2011/05/24/2055723.html apache/bin/ab ./ab –n 1000 –c 100 ht ...

  9. apache2.4配置虚拟目录

    刚开始学习,跟着韩顺平老师的视频课件学习ing~ 这是自己在配置虚拟目录时遇到的问题以及解决办法,记录下来~ ---------------------------分割线君-------------- ...

  10. Application_Start

    这个时间是在第一次访问网站的时候触发..比如你发布了一个网站,,我第一个来访问,,就会触发这个事件..以后再有人来访问就不会触发了.. 一般的,我们总是以为Application_Start是一个应用 ...