S-Nim
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 3694   Accepted: 1936

Description

Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:

  • The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
  • The players take turns chosing a heap and removing a positive number of beads from it.
  • The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:

  • Xor
    the number of beads in the heaps in the current position (i.e. if we
    have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
  • If the xor-sum is 0, too bad, you will lose.
  • Otherwise, move such that the xor-sum becomes 0. This is always possible.

It is quite easy to convince oneself that this works. Consider these facts:

  • The player that takes the last bead wins.
  • After the winning player's last move the xor-sum will be 0.
  • The xor-sum will change after every move.

Which
means that if you make sure that the xor-sum always is 0 when you have
made your move, your opponent will never be able to win, and, thus, you
will win.

Understandibly it is no fun to play a game when both players know
how to play perfectly (ignorance is bliss). Fourtunately, Arthur and
Caroll soon came up with a similar game, S-Nim, that seemed to solve
this problem. Each player is now only allowed to remove a number of
beads in some predefined set S, e.g. if we have S = {2, 5} each player
is only allowed to remove 2 or 5 beads. Now it is not always possible to
make the xor-sum 0 and, thus, the strategy above is useless. Or is it?

your job is to write a program that determines if a position of
S-Nim is a losing or a winning position. A position is a winning
position if there is at least one move to a losing position. A position
is a losing position if there are no moves to a losing position. This
means, as expected, that a position with no legal moves is a losing
position.

Input

Input consists of a number of test cases.

For each test case: The first line contains a number k (0 < k ≤
100) describing the size of S, followed by k numbers si (0 < si ≤
10000) describing S. The second line contains a number m (0 < m ≤
100) describing the number of positions to evaluate. The next m lines
each contain a number l (0 < l ≤ 100) describing the number of heaps
and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the
heaps.

The last test case is followed by a 0 on a line of its own.

Output

For
each position: If the described position is a winning position print a
'W'.If the described position is a losing position print an 'L'.

Print a newline after each test case.

Sample Input

2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0

Sample Output

LWW
WWL

Source

【思路】

SG函数。

裸ti ,注意下sg和vis的大小就好了 :)

【代码】

 #include<cstdio>
#include<cstring>
#define FOR(a,b,c) for(int a=(b);a<(c);a++)
using namespace std; int n,m,a[],sg[]; int dfs(int x) {
if(sg[x]!=-) return sg[x];
if(!x) return sg[x]=;
int vis[]; //size of [si]
memset(vis,,sizeof(vis));
FOR(i,,n)
if(x>=a[i]) vis[dfs(x-a[i])]=;
for(int i=;;i++)
if(!vis[i]) return sg[x]=i;
} int main() {
while(scanf("%d",&n)== && n) {
FOR(i,,n) scanf("%d",&a[i]);
scanf("%d",&m);
memset(sg,-,sizeof(sg));
FOR(i,,m) {
int x,v,ans=;
scanf("%d",&x);
FOR(j,,x)
scanf("%d",&v) , ans^=dfs(v);
if(ans) printf("W");
else printf("L");
}
putchar('\n');
}
return ;
}

poj 2960 S-Nim(SG函数)的更多相关文章

  1. POJ 2960 S-Nim 博弈论 sg函数

    http://poj.org/problem?id=2960 sg函数几乎是模板题. 调试代码的最大障碍仍然是手残在循环里打错变量名,是时候换个hydra产的机械臂了[超想要.jpg] #includ ...

  2. HDU3544 Alice's Game && POJ 2960 S-Nim(SG函数)

    题意: 有一块xi*Yi的矩形巧克力,Alice只允许垂直分割巧克力,Bob只允许水平分割巧克力.具体来说,对于Alice,一块巧克力X i * Y i,只能分解成a * Y i和b * Y i其中a ...

  3. poj 2960 S-Nim【SG函数】

    预处理出SG函数,然后像普通nim一样做即可 #include<iostream> #include<cstdio> using namespace std; const in ...

  4. hdu 3032 Nim or not Nim? sg函数 难度:0

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  5. 多校6 1003 HDU5795 A Simple Nim (sg函数)

    思路:直接打表找sg函数的值,找规律,没有什么技巧 还想了很久的,把数当二进制看,再类讨二进制中1的个数是必胜或者必败状态.... 打表: // #pragma comment(linker, &qu ...

  6. S-Nim POJ - 2960 Nim + SG函数

    Code: #include<cstdio> #include<algorithm> #include<string> #include<cstring> ...

  7. HDU 3032 Nim or not Nim (sg函数)

    加强版的NIM游戏,多了一个操作,可以将一堆石子分成两堆非空的. 数据范围太大,打出sg表后找规律. # include <cstdio> # include <cstring> ...

  8. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  9. HDU 1729 Stone Game 石头游戏 (Nim, sg函数)

    题意: 有n个盒子,每个盒子可以放一定量的石头,盒子中可能已经有了部分石头.假设石头无限,每次可以往任意一个盒子中放石头,可以加的数量不得超过该盒中已有石头数量的平方k^2,即至少放1个,至多放k^2 ...

随机推荐

  1. 去掉Visual Studio 编辑器里中文注释的红色波浪线 转载

    我们通常用visual studio进行开发的时候,我们通常会用到一款比较流行比较方便的插件,那就是Visual Assist X,它可以增强Microsoft开发环境下的编辑能力,支持C/C++,C ...

  2. 网上流行的add(2)(3)(4)

    网上有很多其他的各样的算法.其实这题就可以用javascript属性arguments.callee来实现,代码如下: function add(x){ var result=0; return fu ...

  3. 原始的JDBC操作

    -----------------------------根据配置文件---------------------------- package cn.gdpe.jdbc; import java.io ...

  4. 三十项调整助力 Ubuntu 13.04 更上一层楼

    在Ubuntu 13.04 Raring Ringtail安装完成之后,我们还有三十项调整需要进行. 1.Ubuntu 13.04 Raring Ringtail安装完毕后,我又进行了一系列工作 大家 ...

  5. easy ui tree 取父节点的值和取蓝色框的值

    var nodes = $('#basetree').tree('getChecked'); var cnode = ''; var fnode = ''; for ( var i = 0; i &l ...

  6. iOS狂暴之路---iOS的第一个应用中能学到哪些知识

    一.前文回顾 在之前已经介绍了 iOS的学习路线图,因为中间遇到一些Android开发问题,所以就耽搁了一段时间,那么接下来的这段时间我们将继续开始iOS的狂暴之路学习,按照国际惯例,第一个应用当然是 ...

  7. wamp安装注意点!

    安装wamp前或者重装系统后,默认没有依赖的组件VC11,需要先安装才能运行 下载地址:http://www.microsoft.com/en-us/download/details.aspx?id= ...

  8. 百度劫持js代码

    js代码为: var myDate=new Date(); //返回一日期对象,可以调用getDate(),内容为当前时间,这句是新建一个对象d建好对象后d就有函数date()中的所有特性 var h ...

  9. Linux平台上搭建apache+tomcat负载均衡集群

    传统的Java Web项目是通过tomcat来运行和发布的.但在实际的企业应用环境中,采用单一的tomcat来维持项目的运行是不现实的.tomcat 处理能力低,效率低,承受并发小(1000左右).当 ...

  10. 鸟哥的linux私房菜——第12章 正则表达式与文件格式化处理

    12.1什么是正则表达式 正则表达式就是处理字符串的方法,它是以行为单位来进行字符串的处理行为,正则表达式通过一些特殊符号的辅助,可以让用户轻易达到查找.删除.替换某特定字符串的处理程序. vi.gr ...