http://www.cnblogs.com/wenruo/p/4989425.html

强连通

强连通是指一个有向图中任意两点v1、v2间存在v1到v2的路径及v2到v1的路径。

dfs遍历一个图,会生成一颗树。每个节点按最先遍历的时间给定一个编号,用一个数组dfn表示,又叫时间戳。

然后有几个概念。

画图举例:

假设一个边是u-->v

树边:dfs遍历后生成树的边叫做树边。dfn[u] = -1 如图中<1,2> <2,3> <3,4> <2,5> <1,6> <6,7> <7,8>

前向边:dfn[u]<dfn[v] 如图中<1,4>

后向边:dfn[u]>dfn[v] 如图中<4,2>

    前向边和后向边的两点公共最先为其中一点,即u或v中一点。

横跨边:dfn[u]>dfn[v] 如图中<6,5>

定义一个数组low用来记录一个结点通过任意条树边和最多一条横向边或向后边,所能到达的最小dfn值。

当一个结点low[n] == dfn[n] n就是一个强连通的根,即n的子树是一个强连通分量。可知一个强连通分量的dfn值都是连续的。

可以用一个根唯一的表示一个强连通分量。

强连通模板:

//强连通模板(tarjan) (hdu 1269
const int N = 10005;
const int M = 100005; struct Edge {
int to, next;
} edge[M];
int head[N];
int cnt_edge; void add_edge(int u, int v)
{
edge[cnt_edge].to = v;
edge[cnt_edge].next = head[u];
head[u] = cnt_edge;
cnt_edge++;
} int dfn[N];int idx;
int low[N];
int stk[N];int top;
int kind[N];int cnt;
bool in[N]; int n, m; void dfs(int u)
{
dfn[u] = low[u] = ++idx;
in[u] = true;
stk[++top] = u;
for (int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if (!dfn[v])
{
dfs(v);
low[u] = min(low[v], low[u]);
}
else if(in[v])
low[u] = min(low[u], dfn[v]);
} if (low[u] == dfn[u])
{
++cnt;
int j;
do {
j = stk[top--];
in[j] = false;
kind[j] = cnt;
} while (j != u);
}
} void init()
{
memset(dfn, 0, sizeof dfn);
memset(head, -1, sizeof head);
cnt_edge = 0;
top = cnt = idx = 0;
} int main()
{
while (~scanf("%d%d", &n, &m))
{
if (n == 0 && m == 0) break;
int a, b;
init();
for (int i = 0; i < m; ++i)
{
scanf("%d%d", &a, &b);
add_edge(a, b);
} for (int i = 1; i <= n; ++i)
{
if (!dfn[i]) dfs(i);
} if (cnt == 1) puts("Yes");
else puts("No");
}
return 0;
}

  

双连通

定义:在无向连通图中,如果删除该图的任何一个结点都不能改变该图的连通性,则该图为双连通的无向图。

个人理解就是一个双连通图没有割点,没有桥的图。

在无向图中是没有前向边和横跨边的,只有树边和后向边。

如何找到割点和桥呢?

首先对于树根,如果他有多于两个的子结点,该根结点即为割点。

对于非根节点,画图举例:

low[v]<dfn[u] low[v]==dfn[u]

虚线连接到的位置就是low[v],观察可得当low[v]<=dfn[u]时,一旦去掉u点,f和v不再连通。所以当u不是树根时,任意一个子节点v满足low[v]>=dfn[u],u就是割点。

同时,当low[v]>dfn[u],(u,v)就是桥。

边的双连通分量比较简单, poj1438 & poj3177

点的双连通分量, poj2942 & hdu3394

图的强连通&双连通的更多相关文章

  1. Tarjan算法——强连通、双连通、割点、桥

    Tarjan算法 概念区分 有向图 强连通:在有向图\(G\)中,如果两个顶点\(u, v\ (u \neq v)\)间有一条从\(u\)到\(v\)的有向路径,同时还有一条从\(v\)到\(u\)的 ...

  2. 图的割点 桥 双连通(byvoid)

    [点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...

  3. HDU4612(Warm up)2013多校2-图的边双连通问题(Tarjan算法+树形DP)

    /** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求 ...

  4. 图的连通性问题的小结 (双连通、2-SAT)

    图的连通性问题包括: 1.强连通分量. 2.最小点基和最小权点基. 3.双连通. 4.全局最小割. 5.2-SAT 一.强连通分量 强连通分量很少单独出题,一般都是把求强连通分量作为缩点工具. 有三种 ...

  5. 图论之tarjan真乃神人也,强连通分量,割点,桥,双连通他都会

    先来%一下Robert Tarjan前辈 %%%%%%%%%%%%%%%%%% 然后是热情感谢下列并不止这些大佬的博客: 图连通性(一):Tarjan算法求解有向图强连通分量 图连通性(二):Tarj ...

  6. poj 3352 Road Construction【边双连通求最少加多少条边使图双连通&&缩点】

    Road Construction Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10141   Accepted: 503 ...

  7. UVA 10972 RevolC FaeLoN(边-双连通+缩点)

    很好的一道图论题,整整撸了一上午... 题意是给定一个无向图,要求将所有边变为有向边,求最少加入多少条有向边,使得该图强连通?这里先假设一个问题:给定一个无向子图,该子图具有怎样的性质才能使得将其无向 ...

  8. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  9. poj1515--Street Directions(边的双连通)

    给一个无向图,要求变成强连通的有向图,需要保留哪些边. 边的双连通,对于桥保留两条边,其他的只保留一条边.求双连通的过程中记录保留边. /******************************* ...

随机推荐

  1. codevs 1743 反转卡片

    题目描述 Description [dzy493941464|yywyzdzr原创] 小A将N张卡片整齐地排成一排,其中每张卡片上写了1~N的一个整数,每张卡片上的数各不相同. 比如下图是N=5的一种 ...

  2. Javascript 5种方法实现过滤删除前后所有空格

    第一种:循环检查替换 //供使用者调用 function trim(s){ return trimRight(trimLeft(s)); } //去掉左边的空白 function trimLeft(s ...

  3. 基于android混合开发的JsBridge技术学习

    1.无JsBridge. js如果要调用java(native.也说原生)方法:则java必须实现js接口供挂载在window对象上供js来执行. 这里简单的可以只调用,调用后java端什么也不做.复 ...

  4. js构造函数传参

    1.直接传参并用this关键字初始化属性 function Person(name,age,learn){ this.name = name; this.age = age; this.learn = ...

  5. PHP之序列化与反序列化讲解

    serialize() 把变量和它们的值编码成文本形式 unserialize() 恢复原先变量 eg: $stooges = array('Moe','Larry','Curly');$new = ...

  6. 一组神奇的 3D Gif 动图

    本文由 极客范 - 黄利民 翻译自 mymodernmet.欢迎加入极客翻译小组,同我们一道翻译与分享.转载请参见文章末尾处的要求. 虽然 gif 动图/动画似乎是无处不在现在了,但有些聪明人已经把 ...

  7. 如何启动 SQL Server Agent(SQL Server 配置管理器)

    如何启动 SQL Server Agent(SQL Server 配置管理器) SQL Server 2008 R2 其他版本   4(共 6)对本文的评价是有帮助 - 评价此主题 可以从 SQL S ...

  8. [Gauss]POJ2065 SETI

    题意: *代表0,a-z代表1-26 题目第三行给了一个公式 f (k) = $\sum\limits_{i=0}^{n-1} a_i k^i \pmod{P}$  {f(i)是输入的一串字符串中第i ...

  9. Altium快捷键

    M快捷键 PCB快捷键 编辑 视图

  10. uva 11646 - Athletics Track

    题意:如图,体育场的跑道一圈是400米,其中弯道是两段半径相同的圆弧.已知矩形的长宽比例为a:b,求长和宽的具体数值. 注意:圆弧的圆心在纵轴线上! #include<iostream> ...