Raising Modulo Numbers
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5477   Accepted: 3173

Description

People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:

Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers.

You should write a program that calculates the result and is able to find out who won the game.

Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define DD double
#define LL long long
#define INF 0x3f3f3f
#define MAX 1010
using namespace std;
int fun(int a,int b,int c)
{
int ans=1;
a=a%c;
while(b)
{
if(b&1)
ans=(a*ans)%c;
b=b/2;
a=(a*a)%c;
}
return ans;
}
int main()
{
int t,i,j;
int n,m,sum;
int x,y;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
sum=0;
for(i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
sum=fun(x,y,m)+sum;
}
printf("%d\n",sum%m);
}
return 0;
}

  

poj 1995 Raising Modulo Numbers【快速幂】的更多相关文章

  1. POJ 1995 Raising Modulo Numbers (快速幂)

    题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL ...

  2. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  3. POJ1995 Raising Modulo Numbers(快速幂)

    POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...

  4. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  7. POJ 1995 Raising Modulo Numbers

    快速幂取模 #include<cstdio> int mod_exp(int a, int b, int c) { int res, t; res = % c; t = a % c; wh ...

  8. ZOJ2150 Raising Modulo Numbers 快速幂

    ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> # ...

  9. POJ1995:Raising Modulo Numbers(快速幂取余)

    题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...

随机推荐

  1. 转:android中APK开机自动运行

    背景知识:当Android启动时,会发出一个系统广播,内容为ACTION_BOOT_COMPLETED,它的字符串常量表示为android.intent.action.BOOT_COMPLETED.只 ...

  2. express开发实例

    express获取参数有三种方法:官网介绍如下 Checks route params (req.params), ex: /user/:id Checks query string params ( ...

  3. Swift(三.函数)

    一.swift中的函数分为以下几类吧 1>无参无返   2>无参有返 3>有参无返  4>有参有返  5>有参多返 二.看下面几个例子吧 1>无参无返 func a ...

  4. POJ 3414 Pots bfs打印方案

    题目: http://poj.org/problem?id=3414 很好玩的一个题.关键是又16ms 1A了,没有debug的日子才是好日子.. #include <stdio.h> # ...

  5. JSP页面的五种跳转方法

    ①RequestDispatcher.forward() 是在服务器端起作用,当使用forward()时,Servlet engine传递HTTP请求从当前的Servlet or JSP到另外一个Se ...

  6. CAGradientLayer的一些属性解析-b

    CAGradientLayer的一些属性解析 iOS中Layer的坐标系统: 效果: - (void)viewDidLoad { [super viewDidLoad]; CAGradientLaye ...

  7. 简谈Comparable和Comparator区别

    对于Comparable和Comparator这连个相似的接口,还是做一下比较比较好: Comparable Comparator (1)只包含一个compareTo()方法,此方法可以给两个对象排序 ...

  8. PHP练习题(一)

    程序1 .题目: 企业发放的奖金根据利润提成.利润(I)低于或等于10万元时,奖金可提10% : 利润高于10 万元, 低于20 万元时, 低于10万元的部分按10% 提成,高于 10万元的部分,可提 ...

  9. 容斥原理算法总结(bzoj 2986 2839)

    容斥原理是一个从小学就开始学习的算法.但是很多难题现在都觉得做的十分吃力. 容斥原理大概有两种表现形式,一种是按照倍数进行容斥,这个东西直接用莫比乌斯函数就可以了. #include<iostr ...

  10. draw9patch超详细教程

    这篇文章是android开发人员的必备知识,内容摘选自网络,友我为大家整理和总结,不求完美,但是有用. 视频教程地址:http://player.youku.com/player.php/sid/XM ...