Raising Modulo Numbers
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5477   Accepted: 3173

Description

People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that this market segment was so far underestimated and that there is lack of such games. This kind of game was thus included into the KOKODáKH. The rules follow:

Each player chooses two numbers Ai and Bi and writes them on a slip of paper. Others cannot see the numbers. In a given moment all players show their numbers to the others. The goal is to determine the sum of all expressions AiBi from all players including oneself and determine the remainder after division by a given number M. The winner is the one who first determines the correct result. According to the players' experience it is possible to increase the difficulty by choosing higher numbers.

You should write a program that calculates the result and is able to find out who won the game.

Input

The input consists of Z assignments. The number of them is given by the single positive integer Z appearing on the first line of input. Then the assignements follow. Each assignement begins with line containing an integer M (1 <= M <= 45000). The sum will be divided by this number. Next line contains number of players H (1 <= H <= 45000). Next exactly H lines follow. On each line, there are exactly two numbers Ai and Bi separated by space. Both numbers cannot be equal zero at the same time.

Output

For each assingnement there is the only one line of output. On this line, there is a number, the result of expression

(A1B1+A2B2+ ... +AHBH)mod M.

Sample Input

3
16
4
2 3
3 4
4 5
5 6
36123
1
2374859 3029382
17
1
3 18132

Sample Output

2
13195
13
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
#define DD double
#define LL long long
#define INF 0x3f3f3f
#define MAX 1010
using namespace std;
int fun(int a,int b,int c)
{
int ans=1;
a=a%c;
while(b)
{
if(b&1)
ans=(a*ans)%c;
b=b/2;
a=(a*a)%c;
}
return ans;
}
int main()
{
int t,i,j;
int n,m,sum;
int x,y;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&m,&n);
sum=0;
for(i=1;i<=n;i++)
{
scanf("%d%d",&x,&y);
sum=fun(x,y,m)+sum;
}
printf("%d\n",sum%m);
}
return 0;
}

  

poj 1995 Raising Modulo Numbers【快速幂】的更多相关文章

  1. POJ 1995 Raising Modulo Numbers (快速幂)

    题意: 思路: 对于每个幂次方,将幂指数的二进制形式表示,从右到左移位,每次底数自乘,循环内每步取模. #include <cstdio> typedef long long LL; LL ...

  2. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  3. POJ1995 Raising Modulo Numbers(快速幂)

    POJ1995 Raising Modulo Numbers 计算(A1B1+A2B2+ ... +AHBH)mod M. 快速幂,套模板 /* * Created: 2016年03月30日 23时0 ...

  4. poj 1995 Raising Modulo Numbers 题解

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6347   Accepted: ...

  5. POJ 1995 Raising Modulo Numbers 【快速幂取模】

    题目链接:http://poj.org/problem?id=1995 解题思路:用整数快速幂算法算出每一个 Ai^Bi,然后依次相加取模即可. #include<stdio.h> lon ...

  6. POJ 1995 Raising Modulo Numbers(快速幂)

    嗯... 题目链接:http://poj.org/problem?id=1995 快速幂模板... AC代码: #include<cstdio> #include<iostream& ...

  7. POJ 1995 Raising Modulo Numbers

    快速幂取模 #include<cstdio> int mod_exp(int a, int b, int c) { int res, t; res = % c; t = a % c; wh ...

  8. ZOJ2150 Raising Modulo Numbers 快速幂

    ZOJ2150 快速幂,但是用递归式的好像会栈溢出. #include<cstdio> #include<cstdlib> #include<iostream> # ...

  9. POJ1995:Raising Modulo Numbers(快速幂取余)

    题目:http://poj.org/problem?id=1995 题目解析:求(A1B1+A2B2+ ... +AHBH)mod M. 大水题. #include <iostream> ...

随机推荐

  1. tmux复制到windows剪贴板/粘贴板的坑

    以下所有操作都是在windows下面用putty连接linux centos6的情景下. 一直很纳闷为什么在tmux模式下不能把复制到的文字放到系统的粘贴板里面呢?通过层层阻碍,终于找到了原因. 去掉 ...

  2. NET SqlClient

    NET SqlClient的使用与常见问题 阅读目录 一.简介 二.使用ADO.NET 三.常见问题 回到目录 一.简介 在很多要求性能的项目中,我们都要使用传统的ADO.NET的方式来完成我们日常的 ...

  3. BZOJ3190[JLOI2013]赛车

    Description 这里有一辆赛车比赛正在进行,赛场上一共有N辆车,分别称为个g1,g2--gn.赛道是一条无限长的直线.最初,gi位于距离起跑线前进ki的位置.比赛开始后,车辆gi将会以vi单位 ...

  4. UIStackView 简单使用

    UIStackView提供了一个高效的接口用于平铺一行或一列的视图组合.对于嵌入到StackView的视图,你不用再添加自动布局的约束了.Stack View管理这些子视图的布局,并帮你自动布局约束. ...

  5. bzoj 1964: hull 三维凸包 计算几何

    1964: hull 三维凸包 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 54  Solved: 39[Submit][Status][Discuss ...

  6. Discuz <= 7.2 SQL注入漏洞详情

    在<高级PHP应用程序漏洞审核技术>[1]一文里的"魔术引号带来的新的安全问题"一节里,有 提到通过提取魔术引号产生的“\”字符带来的安全问题,同样这个问题在这里又一次 ...

  7. nginx日志配置

    nginx日志配置 http://www.ttlsa.com/linux/the-nginx-log-configuration/ 日志对于统计排错来说非常有利的.本文总结了nginx日志相关的配置如 ...

  8. Android 使用SharedPreference来进行软件配置的存取

    我们在安卓开发的时候不免需要记录用户键入的一些信息,比如账号和密码,用户使用软件的次数,上次打开软件的时间等等,为了保存这些配置,我们可以使用SharedPreference类保存他们. //使用Sh ...

  9. Class类文件结构、类加载机制以及字节码执行

    一.Class类文件结构 Class类文件严格按照顺序紧凑的排列,由无符号数和表构成,表是由多个无符号数或其他数据项构成的符合数据结构. Class类文件格式按如下顺序排列:   类型 名称 数量 u ...

  10. GCC优化选项-fomit-frame-pointer对于esp和ebp优化的作用

    我的博客:www.while0.com -fomit-frame-pointer选项是发布产品时经常会用到的优化选项,它可以优化汇编函数中用edp协助获取堆栈中函数参数的部分,不使用edp,而是通过计 ...