【转】再谈 最速下降法/梯度法/Steepest Descent
转载请注明出处:http://www.codelast.com/
最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了的一种算法。但是,它的理念是其他某些算法的组成部分,或者说是在其他某些算法中,也有最速下降法的“影子”。因此,我们还是有必要学习一下的。
我很久以前已经写过一篇关于最速下降法的文章了,但是这里我还打算再写一篇,提供更多一些信息,让大家可以从更简单生动的方面去理解它。
『1』名字释义
最速下降法只使用目标函数的一阶导数信息——从“梯度法”这个名字也可见一斑。并且,它的本意是取目标函数值“最快下降”的方向作为搜索方向。于是我们就想知道这个问题的答案:沿什么方向,目标函数
的值下降最快呢?
『2』函数值下降最快的方向
先说结论:沿负梯度方向
,函数值下降最快。
下面就来推导一下。
将目标函数
在点
处泰勒展开(这是我们惯用的“伎俩”了)——
高阶无穷小
可忽略,由于我们定义了步长
,因此,当
时,
,即函数值是下降的。此时
就是一个下降方向。
但是
具体等于什么的时候,可使目标函数值下降最快呢?
文章来源:http://www.codelast.com/
由Cauchy-Schwartz不等式(柯西-许瓦兹不等式)可得:
当且仅当
时,等号成立,
最大(>0)。
所以
时,
最小(<0),
下降量最大。
所以
是最快速下降方向。
『3』缺点
它真的“最快速”吗?答案是否定的。
事实是,它只在局部范围内具有“最速”性质。
对整体求解过程而言,它的下降非常缓慢。
『4』感受一下它是如何“慢”的
先来看一幅图(直接从维基百科上弄过来的,感谢Wiki):

文章来源:http://www.codelast.com/
这幅图表示的是对一个目标函数的寻优过程,图中锯齿状的路线就是寻优路线在二维平面上的投影。
这个函数的表达式是:
它叫做Rosenbrock function(罗森布罗克方程),是个非凸函数,在最优化领域,它通常被用来作为一个最优化算法的performance test函数。
我们来看一看它在三维空间中的图形:

它的全局最优点位于一个长长的、狭窄的、抛物线形状的、扁平的“山谷”中。

它在三维空间中的图形是这样的:

『5』为什么“慢”的分析
上面花花绿绿的图确实很好看,我们看到了那些寻优过程有多么“惨烈”——太艰辛了不是么?
但不能光看热闹,还要分析一下——为什么会这样呢?
由精确line search满足的一阶必要条件,得:
,即
故由最速下降法的
得:

即:相邻两次的搜索方向是相互直交的(投影到二维平面上,就是锯齿形状了)。
文章来源:http://www.codelast.com/
如果你非要问,为什么
就表明这两个向量是相互直交的?那么我就耐心地再解释一下:由两向量夹角的公式:

=>

两向量夹角为90度,因此它们直交。
『6』优点
这个被我们说得一无是处的最速下降法真的就那么糟糕吗?其实它还是有优点的:程序简单,计算量小;并且对初始点没有特别的要求;此外,许多算法的初始/再开始方向都是最速下降方向(即负梯度方向)。
文章来源:http://www.codelast.com/
『7』收敛性及收敛速度
最速下降法具有整体收敛性——对初始点没有特殊要求。
采用精确线搜索的最速下降法的收敛速度:线性。
【转】再谈 最速下降法/梯度法/Steepest Descent的更多相关文章
- 再谈 最速下降法/梯度法/Steepest Descent
转载请注明出处:http://www.codelast.com/ 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了 ...
- 梯度下降法Gradient descent(最速下降法Steepest Descent)
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向 d=−gk
- [转载]再谈百度:KPI、无人机,以及一个必须给父母看的案例
[转载]再谈百度:KPI.无人机,以及一个必须给父母看的案例 发表于 2016-03-15 | 0 Comments | 阅读次数 33 原文: 再谈百度:KPI.无人机,以及一个必须 ...
- Support Vector Machine (3) : 再谈泛化误差(Generalization Error)
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- Unity教程之再谈Unity中的优化技术
这是从 Unity教程之再谈Unity中的优化技术 这篇文章里提取出来的一部分,这篇文章让我学到了挺多可能我应该知道却还没知道的知识,写的挺好的 优化几何体 这一步主要是为了针对性能瓶颈中的”顶点 ...
- 浅谈HTTP中Get与Post的区别/HTTP协议与HTML表单(再谈GET与POST的区别)
HTTP协议与HTML表单(再谈GET与POST的区别) GET方式在request-line中传送数据:POST方式在request-line及request-body中均可以传送数据. http: ...
- Another Look at Events(再谈Events)
转载:http://www.qtcn.org/bbs/simple/?t31383.html Another Look at Events(再谈Events) 最近在学习Qt事件处理的时候发现一篇很不 ...
- C++ Primer 学习笔记_32_STL实践与分析(6) --再谈string类型(下)
STL实践与分析 --再谈string类型(下) 四.string类型的查找操作 string类型提供了6种查找函数,每种函数以不同形式的find命名.这些操作所有返回string::size_typ ...
- 再谈JSON -json定义及数据类型
再谈json 近期在项目中使用到了highcharts ,highstock做了一些统计分析.使用jQuery ajax那就不得不使用json, 可是在使用过程中也出现了非常多的疑惑,比方说,什么情况 ...
随机推荐
- Node.js 内置模块crypto加密模块(1) MD5 和 SHA
MD5:消息摘要算法(Message-Digest Algorithm) SHA家族:安全散列算法( Secure Hash Algorithm ) 1.首先看一个简单的加密 "use st ...
- 剑指Offer的学习笔记(C#篇)-- 树的子结构
题目描述 输入两棵二叉树A,B,判断B是不是A的子结构.(ps:我们约定空树不是任意一个树的子结构) 一 . 二叉树的概念 树形结构是一种典型的非线性结构,除了用于表示相邻关系外,还可 ...
- java基础第十二篇之集合、增强for循环、迭代器和泛型
Collection接口中的常用方法: * 所有的子类子接口都是具有的 * 集合的方法:增删改查 * * public boolean add(E e);//添加元素 返回值表示是否添加成功 * pu ...
- 牛客假日团队赛2 C.修围栏
链接: https://ac.nowcoder.com/acm/contest/924/C 题意: 农民 John 希望修复围绕农场的一小段围栏.他测量了一下,发现需要N (1 <= N < ...
- 51NOD 区间的价值 V2
http://www.51nod.com/contest/problem.html#!problemId=1674 因为题目要求的只是& 和 | 这两个运算.而这两个运算产生的值是有限的. & ...
- 对jvm虚拟机 内存溢出的思考
java内存溢出:当新产生对象时,新生代空间不够,导致无法申请到足够的空间,报内存溢出 内存泄漏:一些静态集合,静态常量没有被gc清理,越来越多,占用内存,最后导致无法申请到新的空间
- Java基础(Scanner、Random、流程控制语句)
第3天 Java基础语法 今日内容介绍 u 引用数据数据类型(Scanner.Random) u 流程控制语句(if.for.while.dowhile.break.continue) 第1章 引用数 ...
- 洛谷 P1690 贪婪的Copy
题目 本题难度较低,操作比较简单,首先对于范围较小的N(<=100),我们可以先跑一遍floyd,求出任意两点之间的最短路.对于很小的p(<=15),我们可以直接考虑全排列,运用到next ...
- HTML5标签选择指引
- Bootstrap下拉菜单相关
1.实现普通下拉菜单:.dropdown>button.dropdown-toggle[data-toggle="dropdown"]+ul.dropdown-menu; 2 ...
的寻优过程: