长链剖分优化dp三例题
首先,重链剖分我们有所认识,在dsu on tree和数据结构维护链时我们都用过他的性质。
在这里,我们要介绍一种新的剖分方式,我们求出这个点到子树中的最长链长,这个链长最终从哪个儿子更新而来,那个儿子就是所谓的“重儿子”,也可以叫长儿子。
我们的做法就是,在统计一个点的信息时,对于重儿子,我们直O(1)接继承它的答案(这里有指针技巧,只能看代码,不可言传),对于轻儿子我们暴力统计。
复杂度分析:一个点被计算,最多只会在作为重链上的点时被继承一次,在重链顶端时被暴力统计一次。所以最终复杂度是O(N)的。
因为我们这里要谈的是dp优化,所以我们还没有必要研究这个结构的性质。
它有两个应用,首先就是优化以链长度为下标的树形dp,也就是今天我们要谈的玩法,还有一个是快速求一个点的k级祖先,这个我们先不研究。
只凭语言大家很难体会到这个算法的难度,下面我们看一些题目。
首先是CF1009:
这道题完全可以用dsu on tree的科技过去,但是为了能入手一道简单的长剖题目,我们还是思考一下。
如果设计一个dp:dp[i][j]表示以i为根的子树内离i距离为j的节点个数。转移方程也就很好写了:dp[x][j]+=dp[y][j-1]。(y是x的儿子),我们观察,在继承一个儿子的答案时,儿子的数组整体左移一个元素的位置可以直接贡献给父亲,于是我们就做到了O(1)继承。
于是暴力统计其他儿子的时候我们直接按方程转移即可。
代码:
//倔强芬芳了惘然
#pragma GCC optimize(3)
#include<bits/stdc++.h>
using namespace std;
const int N=;
struct node{int y,nxt;}e[N*];
int n,m,a[N],d[N],fa[N],son[N],h[N];
int ans[N],cnt[N],c,st[N],tt;
void add(int x,int y){
e[++c]=(node){y,h[x]};h[x]=c;
e[++c]=(node){x,h[y]};h[y]=c;
} void dfs(int x){ d[x]=;
for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa[x]){
fa[y]=x;dfs(y);d[x]=max(d[x],d[y]+);
if(d[y]>d[son[x]]) son[x]=y;
} return ;
} void solve(int x){
int *f=&cnt[st[x]=++tt],*g;
f[ans[x]=]=;
if(son[x]) solve(son[x]),
ans[x]=ans[son[x]]+;else return ;
if(ans[x]==) ans[x]=;
for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa[x]&&y!=son[x]){
solve(y);g=&cnt[st[y]];
for(int j=;j<=d[y]-;j++)
if((f[j+]+=g[j])>=f[ans[x]]&&j+<ans[x]||
f[j+]>f[ans[x]]) ans[x]=j+;
} return ;
} void solve(){
dfs();solve();
for(int i=;i<=n;i++)
printf("%d\n",ans[i]);
} int main(){
scanf("%d",&n);
for(int i=,x,y;i<n;i++)
scanf("%d%d",&x,&y),add(x,y);
solve();return ;
}
长链剖分
现在是POI2014Hotels
其实大部分人对计数题还是有一定抵触的,因为一些做法的正确性很难把握。dp是很常用的计数手段,但是这个题的dp方程很有意思。向各位推荐一篇题解→luogu题解1
我们只借用它的方程考虑这个能不能直接O(1)继承重儿子的答案?(当然可以啦)
但是我们注意,f数组和g数组在继承的时候方向是不一样的,因为这一点,我们最好在递归之前就为下面的计算分配好指针,来保证顺利继承,另外,在空间分配上,这个题也很巧妙。因为我们在长链上,f数组不断向后偏移,g数组不断向前偏移,所以我们要为每段数组预留出两个链长的空间,很难描述,还是要去研究代码来理解这种分配规则。可以说这是一道不看题解不好做的题目。
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=;
struct node{int y,nxt;}e[N*];
int h[N],d[N],son[N],c,n,m,k,p;
ll tmp[N*],*id=tmp,*f[N],*g[N],ans=;
void add(int x,int y){
e[++c]=(node){y,h[x]};h[x]=c;
e[++c]=(node){x,h[y]};h[y]=c;
} void dfs(int x,int fa){
d[x]=;for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa){
dfs(y,x);d[x]=max(d[x],d[y]+);
if(d[y]>d[son[x]]) son[x]=y;
} return ;
} void solve(int x,int fa){
if(son[x]) f[son[x]]=f[x]+,
g[son[x]]=g[x]-,solve(son[x],x);
f[x][]=;
for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa&&y!=son[x]){
f[y]=id;id+=d[y]*;g[y]=id;
id+=d[y]*;solve(y,x);
for(int j=;j<d[y];j++){
if(j) ans+=(f[x][j-]*g[y][j]);
ans+=(f[y][j]*g[x][j+]);
} for(int j=;j<d[y];j++){
if(j) g[x][j-]+=g[y][j];
g[x][j+]+=f[x][j+]*f[y][j];
f[x][j+]+=f[y][j];
}
} ans+=g[x][];return ;
} int main(){
scanf("%d",&n);
for(int i=,x,y;i<n;i++)
scanf("%d%d",&x,&y),add(x,y);
dfs(,);f[]=id;id+=d[]*;g[]=id;id+=d[]*;
solve(,);printf("%lld\n",ans);return ;
}
长链剖分
接下来是WC2010重建计划
其实这道题可以说是点分治界的一道神题,可是用长剖也可以做,但是并不是特别主流的做法。这个如果我们dp出局部的答案,还是需要对一个区间的状态取最优的,所以我们想到了用线段树来记状态,区间取max直接维护就好,然后需要继承一些东西的时候,我们不能用指针轻易的完成这个操作了,所以我们只好借助dfs序搞出偏移量即可。
为什么把这道题放在这个位置,首先因为它综合了其他算法,此外还是因为他的细节很多,容易手残写错,可以献给大家练习代码能力。(我的代码不知道出了什么鬼,就是不能开O2,一开O2就全T要么就全RE,不过比点分治短就是了)
代码:
#include<bits/stdc++.h>
#define db double
using namespace std;
const int N=;
struct node{int y,z,nxt;}e[N];
int L,U,n,son[N];double p,f[N],g[N],ans;
int h[N],ww[N],d[N],pos[N],tot,c,rt,cnt,lm;
struct segt{int l,r,ls,rs;db s;}t[N*];
void add(int x,int y,int z){
e[++c]=(node){y,z,h[x]};h[x]=c;
e[++c]=(node){x,z,h[y]};h[y]=c;
} void pushup(int x){
int ls=t[x].ls,rs=t[x].rs;
t[x].s=max(t[ls].s,t[rs].s);
} void build(int x,int l,int r){
if(l==r){t[x]=(segt){l,r,-,-,-1e10};return ;}
int mid=l+r>>;t[x].l=l;t[x].r=r;
t[x].ls=++cnt;t[x].rs=++cnt;
build(t[x].ls,l,mid);build(t[x].rs,mid+,r);
} void clear(int x){
t[x].s=1e-;
if(~t[x].ls) clear(t[x].ls);
if(~t[x].rs) clear(t[x].rs);
} db update(int x,int k,db c){
if(t[x].r==t[x].l) return t[x].s=max(t[x].s,c);
int mid=t[x].l+t[x].r>>;
if(k<=mid) update(t[x].ls,k,c);
else update(t[x].rs,k,c);pushup(x);
} db query(int x,int l,int r){
if(l<=t[x].l&&t[x].r<=r)
return t[x].s;db re=-1e18;
int mid=t[x].l+t[x].r>>;
if(l<=mid) re=max(re,query(t[x].ls,l,r));
if(mid<r) re=max(re,query(t[x].rs,l,r));
return re;
} void dfs(int x,int fa,int v){
d[x]=;for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa){
dfs(y,x,e[i].z);
d[x]=max(d[x],d[y]+);
if(d[y]>d[son[x]])
son[x]=y,ww[x]=e[i].z;
} return ;
} void solve(int x,int fa){
if(!pos[x]) pos[x]=++tot;
int u=pos[x];g[u]=f[u]=;//u是x在dfs序中的位置
if(son[x]) solve(son[x],x),//v是y在dfs序中的位置
g[u]+=g[u+]+ww[x]-p,f[u]=-g[u];
update(rt,u,f[u]);
for(int i=h[x],y;i;i=e[i].nxt)
if((y=e[i].y)!=fa&&y!=son[x]){
solve(y,x);int v=pos[y],z=e[i].z;
for(int j=;j<=d[y];j++)
if(L-j<d[x]){
db q=query(rt,u+max(,L-j),
u+min(U-j,d[x]-));
ans=max(ans,z-p+f[v+j-]+g[v]+g[u]+q);
} for(int j=;j<=d[y];j++)
if(z-p+f[v+j-]+g[v]>g[u]+f[u+j])
f[u+j]=z-p+f[v+j-]+g[v]-g[u],
update(rt,u+j,f[u+j]);
} if(d[x]->=L) ans=max(ans,g[u]+
query(rt,u+L,u+min(U,d[x]-)));
} bool pd(db x){
clear(rt);p=x;
ans=-1e18;solve(,);
return ans>=;
} int main(){ rt=++cnt;
scanf("%d%d%d",&n,&L,&U);build(rt,,n);
for(int i=,x,y,z;i<n;i++)
scanf("%d%d%d",&x,&y,&z),
add(x,y,z),lm=max(lm,z);
dfs(,,);db l=,r=lm;
while(r-l>1e-){
db mid=(l+r)/2.0;
if(pd(mid)) l=mid;
else r=mid;
} printf("%.3lf\n",l);return ;
}
长链剖分
这种算法我们就讨论到这里,其实还有不少其他的题目,希望大家有余力可以多加练习。
长链剖分优化dp三例题的更多相关文章
- 【CF1009F】Dominant Indices(长链剖分优化DP)
点此看题面 大致题意: 设\(d(x,y)\)表示\(x\)子树内到\(x\)距离为\(y\)的点的个数,对于每个\(x\),求满足\(d(x,y)\)最大的最小的\(y\). 暴力\(DP\) 首先 ...
- CF1009F Dominant Indices——长链剖分优化DP
原题链接 \(EDU\)出一道长链剖分优化\(dp\)裸题? 简化版题意 问你每个点的子树中与它距离为多少的点的数量最多,如果有多解,最小化距离 思路 方法1. 用\(dsu\ on\ tree\)做 ...
- 2019.01.19 bzoj3653: 谈笑风生(长链剖分优化dp)
传送门 长链剖分优化dpdpdp水题. 题意简述:给一棵树,mmm次询问,每次给一个点aaa和一个值kkk,询问满足如下条件的三元组(a,b,c)(a,b,c)(a,b,c)的个数. a,b是c的祖先 ...
- 2018.11.03 NOIP模拟 树(长链剖分优化dp)
传送门 考虑直接推式子不用优化怎么做. 显然每一个二进制位分开计算贡献就行. 即记录fi,jf_{i,j}fi,j表示距离iii这个点不超过jjj的点的每个二进制位的0/10/10/1个数. 但直接 ...
- BZOJ4543[POI2014]Hotel加强版——长链剖分+树形DP
题意参见BZOJ3522 n<=100000 数据范围增强了,显然之前的转移方程不行了,那么不妨换一种. 因为不能枚举根来换根DP,那么我们描述的DP方程每个点要计算三个点都在这个点的子树内的方 ...
- 长链剖分优化树形DP总结
长链剖分 规定若\(x\)为叶结点,则\(len[x]=1\). 否则定义\(preferredchild[x]\)(以下简称\(pc[x]\),称\(pc[x]\)为\(x\)的长儿子)为\(x\) ...
- 蒟蒻的长链剖分学习笔记(例题:HOTEL加强版、重建计划)
长链剖分学习笔记 说到树的链剖,大多数人都会首先想到重链剖分.的确,目前重链剖分在OI中有更加多样化的应用,但它大多时候是替代不了长链剖分的. 重链剖分是把size最大的儿子当成重儿子,顾名思义长链剖 ...
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- bzoj4543 [POI2014]Hotel加强版 长链剖分+树形DP
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4543 题解 这道题的弱化版 bzoj3522 [POI2014]Hotel 的做法有好几种吧. ...
随机推荐
- 一个Java语言所写的shop网站框架明细
核心框架Spring Framework :作为一个优秀的开源框架,是为了解决企业应用程序开发复杂性而创建的.框架的主要优势之一就是其分层架构,分层架构允许您选择使用哪一个组件,同时为 J2EE 应用 ...
- Linq 知识总结
一.说明: LINQ,语言集成查询(Language INtegrated Query)是一组用于c#和Visual Basic语言的扩展.它允许编写C#或者Visual Basic代码以查询数据库相 ...
- [NOIP2014]无线网站发射器选址
Description 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网.假设该城市的布局为由严格平行的129条东西向街道和129条南北向街道所形成的网格状, ...
- PostgreSQL - 查询表结构和索引信息
前言 PostgreSQL的表一般都是建立在public这个schema下的,假如现在有个数据表t_student,可以用以下几种方式来查询表结构和索引信息. 使用\d元命令查看表字段信息和索引信息 ...
- .Net Core应用框架Util介绍(二) 转
Util的开源地址 https://github.com/dotnetcore/util Util的开源协议 Util以MIT协议开源,这是目前最宽松的开源协议,你不仅可以用于商业项目,还能把Util ...
- Centos 7 在Hyper-v中安装完成后,提示密码错误
如果提示密码错误,可能是由于密码首字母采用了大些,而caps lock似乎不能识别,因此,在需要输入大写字母的时候,按住shift即可.
- hdu 3686 Traffic Real Time Query System 点双两通分量 + LCA。这题有重边!!!
http://acm.hdu.edu.cn/showproblem.php?pid=3686 我要把这题记录下来. 一直wa. 自己生成数据都是AC的.现在还是wa.留坑. 我感觉我现在倒下去床上就能 ...
- dos命令安装windows服务
以下两种方法都是通过dos命令创建windows服务 1.创建服务 sc create UploadRealVolumeService start= auto binpath= C:\Users\Ad ...
- 访问者模式和php实现
访问者模式: 表示作用于某个对象结构中的各个元素的操作.它使你可以在不改变各个元素类的前提下定义作用于这些元素的操作. 角色: 1)抽象访问者:为该对象结构中具体元素角色声明一个访问操作接口.该操作接 ...
- codeforces1025
hackforces + fstforces A 很明显当有一个字母出现次数>1时即合法 $n = 1$的情况需要特判 #include<cstdio> #include<ve ...