今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期。大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步。

所以,今天就来带大家写keras中的Hello World , 做一个手写数字识别的cnn。回顾cnn架构:

我们要处理的是这样的灰度像素图:

我们先来看跑完的结果(在Google Colab上运行

x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 12s 193us/step - loss: 0.2672 - acc: 0.9166 - val_loss: 0.0648 - val_acc: 0.9792
Epoch 2/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0892 - acc: 0.9731 - val_loss: 0.0433 - val_acc: 0.9866
Epoch 3/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0666 - acc: 0.9796 - val_loss: 0.0353 - val_acc: 0.9874
Epoch 4/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0578 - acc: 0.9829 - val_loss: 0.0327 - val_acc: 0.9887
Epoch 5/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0483 - acc: 0.9856 - val_loss: 0.0295 - val_acc: 0.9901
Epoch 6/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0433 - acc: 0.9869 - val_loss: 0.0313 - val_acc: 0.9895
Epoch 7/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0379 - acc: 0.9879 - val_loss: 0.0267 - val_acc: 0.9913
Epoch 8/12
60000/60000 [==============================] - 9s 147us/step - loss: 0.0353 - acc: 0.9891 - val_loss: 0.0263 - val_acc: 0.9913
Epoch 9/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0327 - acc: 0.9904 - val_loss: 0.0275 - val_acc: 0.9905
Epoch 10/12
60000/60000 [==============================] - 9s 146us/step - loss: 0.0323 - acc: 0.9898 - val_loss: 0.0260 - val_acc: 0.9914
Epoch 11/12
60000/60000 [==============================] - 9s 147us/step - loss: 0.0286 - acc: 0.9913 - val_loss: 0.0283 - val_acc: 0.9909
Epoch 12/12
60000/60000 [==============================] - 9s 147us/step - loss: 0.0267 - acc: 0.9922 - val_loss: 0.0268 - val_acc: 0.9906
Test loss: 0.026836299882206368
Test accuracy: 0.9906

所以我们跑的是keras_mnist_cnn.py。最后达到99%的预测准确率。首先来解释一下输出:

测试样本格式是28*28像素的1通道,灰度图,数量为60000个样本。

测试集是10000个样本。

一次epoch是一次完整迭代(所有样本都训练过),这里我们用了12次迭代,最后一次迭代就可以收敛到99.06%预测准确率了。

接下来我们看代码:

from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K

一开始我们导入一些基本库,包括:

  • minst数据集
  • Sequential类,可以封装各种神经网络层,包括Dense全连接层,Dropout层,Cov2D卷积层,等等
  • 我们都直到Keras支持两个后端TensorFlow和Theano,可以在$HOME/.keras/keras.json中配置

接下来,我们准备训练集和测试集,以及一些重要参数:

# batch_size 太小会导致训练慢,过拟合等问题,太大会导致欠拟合。所以要适当选择
batch_size = 128
# 0-9手写数字一个有10个类别
num_classes = 10
# 12次完整迭代,差不多够了
epochs = 12
# 输入的图片是28*28像素的灰度图
img_rows, img_cols = 28, 28
# 训练集,测试集收集非常方便
(x_train, y_train), (x_test, y_test) = mnist.load_data() # keras输入数据有两种格式,一种是通道数放在前面,一种是通道数放在后面,
# 其实就是格式差别而已
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
# 把数据变成float32更精确
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# 把类别0-9变成独热码
y_train = keras.utils.np_utils.to_categorical(y_train, num_classes)
y_test = keras.utils.np_utils.to_categorical(y_test, num_classes)

然后,是令人兴奋而且简洁得令人吃鲸的训练构造cnn和训练过程:

# 牛逼的Sequential类可以让我们灵活地插入不同的神经网络层
model = Sequential()
# 加上一个2D卷积层, 32个输出(也就是卷积通道),激活函数选用relu,
# 卷积核的窗口选用3*3像素窗口
model.add(Conv2D(32,
activation='relu',
input_shape=input_shape,
nb_row=3,
nb_col=3))
# 64个通道的卷积层
model.add(Conv2D(64, activation='relu',
nb_row=3,
nb_col=3))
# 池化层是2*2像素的
model.add(MaxPooling2D(pool_size=(2, 2)))
# 对于池化层的输出,采用0.35概率的Dropout
model.add(Dropout(0.35))
# 展平所有像素,比如[28*28] -> [784]
model.add(Flatten())
# 对所有像素使用全连接层,输出为128,激活函数选用relu
model.add(Dense(128, activation='relu'))
# 对输入采用0.5概率的Dropout
model.add(Dropout(0.5))
# 对刚才Dropout的输出采用softmax激活函数,得到最后结果0-9
model.add(Dense(num_classes, activation='softmax'))
# 模型我们使用交叉熵损失函数,最优化方法选用Adadelta
model.compile(loss=keras.metrics.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# 令人兴奋的训练过程
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
verbose=1, validation_data=(x_test, y_test))

完整地训练完毕之后,可以计算一下预测准确率:

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

参考链接:
1、nooverfit.com/wp/keras-手把手入门1-手写数字识别-深度学习实战/

2、https://blog.csdn.net/yzh201612/article/details/69400002

MINST手写数字识别(二)—— 卷积神经网络(CNN)的更多相关文章

  1. MNIST手写数字识别:卷积神经网络

    代码 import torch from torchvision import datasets from torch.utils.data import DataLoader import torc ...

  2. 利用神经网络算法的C#手写数字识别(二)

    利用神经网络算法的C#手写数字识别(二)   本篇主要内容: 让项目编译通过,并能打开图片进行识别.   1. 从上一篇<利用神经网络算法的C#手写数字识别>中的源码地址下载源码与资源, ...

  3. MINST手写数字识别(三)—— 使用antirectifier替换ReLU激活函数

    这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识 ...

  4. MINST手写数字识别(一)—— 全连接网络

    这是一个简单快速入门教程——用Keras搭建神经网络实现手写数字识别,它大部分基于Keras的源代码示例 minst_mlp.py. 1.安装依赖库 首先,你需要安装最近版本的Python,再加上一些 ...

  5. Kaggle竞赛丨入门手写数字识别之KNN、CNN、降维

    引言 这段时间来,看了西瓜书.蓝皮书,各种机器学习算法都有所了解,但在实践方面却缺乏相应的锻炼.于是我决定通过Kaggle这个平台来提升一下自己的应用能力,培养自己的数据分析能力. 我个人的计划是先从 ...

  6. BP神经网络的手写数字识别

    BP神经网络的手写数字识别 ANN 人工神经网络算法在实践中往往给人难以琢磨的印象,有句老话叫“出来混总是要还的”,大概是由于具有很强的非线性模拟和处理能力,因此作为代价上帝让它“黑盒”化了.作为一种 ...

  7. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  8. 手写数字识别 卷积神经网络 Pytorch框架实现

    MNIST 手写数字识别 卷积神经网络 Pytorch框架 谨此纪念刚入门的我在卷积神经网络上面的摸爬滚打 说明 下面代码是使用pytorch来实现的LeNet,可以正常运行测试,自己添加了一些注释, ...

  9. TensorFlow 卷积神经网络手写数字识别数据集介绍

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 手写数字识别 接下来将会以 MNIST 数据集为例,使用卷积层和池 ...

随机推荐

  1. L2-023 图着色问题 (25 分)vector

    图着色问题是一个著名的NP完全问题.给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色? 但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请 ...

  2. c# 中的 protected internal 如何在 vc.net 中实现

    c# 中有 protected internal 的复合访问属性, 保证assembly内部访问,以及外部的派生类访问 vc.net 中无法直接写上 protected internal, 其对应的写 ...

  3. 2014-7-17 NOIP模拟赛

    czy的后宫3(莫队) [题目描述] 上次czy在机房妥善安排了他的后宫之后,他发现可以将他的妹子分为c种,他经常会考虑这样一个问题:在[l,r]的妹子中间,能挑选出多少不同类型的妹子呢? 注意:由于 ...

  4. jstl标签库不起作用,直接输出表达式

    引用jstl.jar包 在jsp页面添加<%@ page isELIgnored="false"%>即可

  5. 51Nod 1098 最小方差 (数论)

    #include <iostream> #include <cstdio> #include <algorithm> using namespace std; ty ...

  6. Log4j2 - 动态生成Appender

    功能需求 项目里将User分成了各个区域(domain),这些domain有个标志domainId,现在要求在打印日志的时候,不仅将所有User的日志都打印到日志文件logs/CNTCore.log中 ...

  7. spring boot 配置https 报这个错误:java.lang.IllegalArgumentException: Private key must be accompanied by certificate chain

    找了接近半天的时间,原来是那么小的问题 server.ssl.key-store=test.jksserver.ssl.key-store-password=123456server.ssl.key- ...

  8. [Python]IndentationError: unindent does not match any outer indentation level

    这个是缩进没对齐 可能是混用了tab与空格,到这里显示空白就可以看出来.

  9. PostgreSQL-8-数据合并

    -- 1.JOIN与UNION的区别详解 CREATE TABLE t1(id int,value1 text); ,,,'c'); -- 创建表格t1 CREATE TABLE t2(id int, ...

  10. java简单操作redis数据库

    package RedisTest; import redis.clients.jedis.Jedis; public class RedisTest { private static String ...