hdu 1576(逆元)
A/B
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 3890 Accepted Submission(s): 2981
每组数据有两个数n(0 <= n < 9973)和B(1 <= B <= 10^9)。
1000 53
87 123456789
6060
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL;
const LL mod = ;
LL extend_gcd(LL a,LL b,LL &x,LL &y){
if(!b){
x=,y = ;
return a;
}else{
LL x1,y1;
LL d = extend_gcd(b,a%b,x1,y1);
x = y1;
y = x1 - a/b*y1;
return d;
}
}
LL mod_reverse(LL a,LL n)
{
LL x,y;
LL d=extend_gcd(a,n,x,y);
if(d==) return (x%n+n)%n;
else return -;
}
int main()
{
int tcase;
scanf("%d",&tcase);
while(tcase--){
LL n,b;
scanf("%lld%lld",&n,&b);
LL x,y;
LL inv = mod_reverse(b,mod);
printf("%lld\n",inv*n%mod);
}
return ;
}
hdu 1576(逆元)的更多相关文章
- hdu 1576 A/B
原题链接:hdu 1576 A/B 同样是用扩展的欧几里得算法.A = 9973k+n = xB,从而转化为:xB-9973k=n求解x即可. 具体扩展欧几里得算法请参考:hdu 2669 Roman ...
- HDU 1576 (乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1576 题目大意:求(A/B)mod 9973.但是给出的A是mod形式n,n=A%9973. 解题思 ...
- hdu 1576 求逆元
题意:给出n=A mod 9973和B,求(A/B) mod 9973 昨天用扩展欧几里得做过这题,其实用逆元也可以做. 逆元的定义:例如a*b≡1 (mod m),则b就是a关于m的逆元. 求逆元方 ...
- hdu 1576 A/B 【扩展欧几里得】【逆元】
<题目链接> <转载于 >>> > A/B Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)( ...
- 题解报告:hdu 1576 A/B(exgcd、乘法逆元+整数快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1576 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n ...
- 【hdu 1576】A/B(数论--拓展欧几里德 求逆元 模版题)
题意:给出 A%9973 和 B,求(A/B)%9973的值. 解法:拓展欧几里德求逆元.由于同余的性质只有在 * 和 + 的情况下一直成立,我们要把 /B 转化为 *B-1,也就是求逆元. 对于 B ...
- hdu 1576 A/B (求逆元)
题目链接 Problem Description 要求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973)(我们给定的A必能被B整除,且gcd(B,9973) = 1). Inpu ...
- HDU 1576 A/B( 逆元水 )
链接:传送门 思路: 现在给出 n = A % 9973,n = A - A/9973×9973,已知 B|A ,设 A = Bx,可以得到如下形式的式子:Bx + 9973×y = n ,因为gcd ...
- HDU 1576 A/B 数论水题
http://acm.hdu.edu.cn/showproblem.php?pid=1576 写了个ex_gcd的模板...太蠢导致推了很久的公式 这里推导一下: 因为 1 = BX + 9973Y ...
随机推荐
- django-simple-captcha 验证码干扰线随机点位
CAPTCHA_NOISE_FUNCTIONS = ( 'captcha.helpers.noise_null',# 设置样式 'captcha.helpers.noise_arcs',# 设置干扰线 ...
- 802. Find Eventual Safe States
https://leetcode.com/problems/find-eventual-safe-states/description/ class Solution { public: vector ...
- JAVA连接数据库,并写入到txt文件
package Hello; import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;impor ...
- 动态规划:HDU-2955-0-1背包问题:Robberies
解题心得: 这题涉及概率问题,所以要运用概率的知识进行解答.题目要求不被抓到的概率,但是给出的是被抓到的概率,所要用1减去后得到答案.最好使用double类型,避免精度问题导致WA. 先算出可以抢劫的 ...
- codeforce830A. Office Keys
A. Office Keys time limit per test: 2 seconds memory limit per test: 256 megabytes input standard: i ...
- getsupportfragmentmanager 没有这个方法
让activity继承自fragmentactivity就行了.
- 实验6 流类库与I/O
Part2 基础练习 使用文件I/O流,以文本方式打开Part1中合并后的文件,在文件最后一行添加字符"merge successfully. " // 合并两个文件内容到一个新文 ...
- 5、CSS基础part-3
1.CSS列表 ①类型 ul.disc {list-style-type: disc} ②位置 ul.inside {list-style-position: inside} ③列表图像 2.表格
- IOS开发学习笔记029-反选、全选、删除按钮的实现
还是在上一个程序的基础上进行修改 1.反选按钮 2.全选按钮 3.删除按钮 4.其他代码优化 1.反选按钮 反选的过程就是将_deleteShops数组中得数据清空,然后将Shops中数组添加到_de ...
- Python学习-day16-DOM
文档对象模型(Document Object Model,DOM)是一种用于HTML和XML文档的编程接口.它给文档提供了一种结构化的表示方法,可以改变文档的内容和呈现方式.我们最为关心的是,DOM把 ...