树形dp+第二类斯特林数

又是这种形式,只不过这次不用伯努利数了

直接搞肯定不行,我们化简一下式子,考虑x^n的组合意义,是把n个物品放到x个箱子里的方案数。那么就等于这个i=1->n,sigma(s[n,i]*A(x,i)),就是枚举要分成几组,这个用斯特林数算,然后把这些组放进箱子里,那么就是A(x,i),A是排列,但是这样还是不行,我们把A(x,i)=C(x,i)*i!,这样就行了,阶乘和斯特林数可以提出来,只要预处理一个点的组合数就行了,也就是∑i=1->n ∑ j=1->k C(dis(u,i),j),这个东西我们可以利用组合数的性质dp,也就是c[i][j]=c[i-1][j]+c[i-1][j-1],记住要减去重复的

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5 + , M = , P = ;
int n, m, L, now, A, B, Q;
int s[M][M], up[N][M], down[N][M], fac[M];
vector<int> G[N];
void dfs(int u, int last)
{
down[u][] = ;
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
if(v == last) continue;
dfs(v, u);
down[u][] = (down[u][] + down[v][]) % P;
for(int j = ; j <= m; ++j) down[u][j] = ((down[u][j] + (down[v][j - ] + down[v][j]) % P) % P) % P;
}
}
void dfs1(int u, int last)
{
if(last)
{
up[u][] = n - down[u][];
for(int i = ; i <= m; ++i)
{
up[u][i] = (up[u][i] + ((up[last][i] + up[last][i - ] + down[last][i] + down[last][i - ] - down[u][i] - (down[u][i - ] << )) % P + P) % P) % P;
if(i > ) up[u][i] = ((up[u][i] - down[u][i - ]) % P + P) % P;
}
}
for(int i = ; i < G[u].size(); ++i)
{
int v = G[u][i];
if(v == last) continue;
dfs1(v, u);
}
}
int main()
{
scanf("%d%d%d%d%d%d%d", &n, &m, &L, &now, &A, &B, &Q);
for(int i = ; i < n; ++i)
{
now = (now * A + B) % Q;
int tmp = min(i, L);
int u = i - now % tmp, v = i + ;
G[u].push_back(v);
G[v].push_back(u);
}
s[][] = fac[] = ;
for(int i = ; i <= m; ++i)
{
fac[i] = fac[i - ] * i % P;
for(int j = ; j <= m; ++j)
s[i][j] = (s[i - ][j] * j % P + s[i - ][j - ]) % P;
}
dfs(, );
dfs1(, );
for(int i = ; i <= n; ++i)
{
int ans = ;
for(int j = ; j <= m; ++j) ans = (ans + s[m][j] * fac[j] % P * (up[i][j] + down[i][j]) % P) % P;
printf("%d\n", ans);
}
return ;
}

bzoj2159的更多相关文章

  1. BZOJ2159 Crash的文明世界(树形dp+斯特林数)

    根据组合意义,有nk=ΣC(n,i)*i!*S(k,i) (i=0~k),即将k个有标号球放进n个有标号盒子的方案数=在n个盒子中选i个将k个有标号球放入并且每个盒子至少有一个球. 回到本题,可以令f ...

  2. 【BZOJ2159】Crash的文明世界(第二类斯特林数,动态规划)

    [BZOJ2159]Crash的文明世界(第二类斯特林数,动态规划) 题面 BZOJ 洛谷 题解 看到\(k\)次方的式子就可以往二项式的展开上面考,但是显然这样子的复杂度会有一个\(O(k^2)\) ...

  3. BZOJ2159 Crash 的文明世界 【第二类斯特林数 + 树形dp】

    题目链接 BZOJ2159 题解 显然不能直接做点分之类的,观察式子中存在式子\(n^k\) 可以考虑到 \[n^k = \sum\limits_{i = 0} \begin{Bmatrix} k \ ...

  4. BZOJ2159 Crash的文明世界

    Description 传送门 给你一个n个点的树,边权为1. 对于每个点u, 求:\(\sum_{i = 1}^{n} distance(u, i)^{k}\) $ n \leq 50000, k ...

  5. BZOJ2159 : Crash 的文明世界

    $x^k=\sum_{i=1}^k Stirling2(k,i)\times i!\times C(x,i)$ 设$f[i][j]=\sum_{k=1}^n C(dist(i,k),j)$. 则可以利 ...

  6. 【BZOJ2159】Crash的文明世界

    [2011集训贾志鹏]Crash的文明世界 Description Crash小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和 ...

  7. [BZOJ2159]Crash的文明世界(斯特林数+树形DP)

    题意:给定一棵树,求$S(i)=\sum_{j=1}^{n}dist(i,j)^k$.题解:根据斯特林数反演得到:$n^m=\sum_{i=0}^{n}C(n,i)\times i!\times S( ...

  8. 【BZOJ2159】Crash的文明世界 斯特林数+树形dp

    Description Crash 小朋友最近迷上了一款游戏--文明5(Civilization V).在这个游戏中,玩家可以建立和发展自己的国家,通过外交和别的国家交流,或是通过战争征服别的国家.现 ...

  9. 【bzoj2159】Crash 的文明世界(树形dp+第二类斯特林数)

    传送门 题意: 给出一颗\(n\)个结点的树,对于每个结点输出其答案,每个结点的答案为\(ans_x=\sum_{i=1}^ndis(x,i)^k\). 思路: 我们对于每个结点将其答案展开: \[ ...

随机推荐

  1. hql 时间

    1.hql中时间格式转换 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); String d ...

  2. javascript 转义函数

    // 字符转义 html2Escape(sHtml) { return sHtml.replace(/[<>&"]/g, function(c) { return { ' ...

  3. windowsclient开发--使你的client执行时记住上次关闭的大小和位置

    差点儿全部的windowsclient都能够调整大小,所以用户依据自己的喜好调整client的大小和位置. 可是当该client退出后,又一次执行client的时候.我们往往又要调整自己喜好的大小和位 ...

  4. web前端面试系列 一 js闭包

    一.什么是闭包? JavaScript高级程序设计第三版: 闭包是指有权访问另一个函数作用域中的变量的函数. 在js中定义在函数内部的子函数能够访问外部函数定义的变量,因此js内部函数就是一个闭包. ...

  5. Laravel 数据库连接, 数据库名,配置文件修改

    数据库连接:在根目录(laravel5.1下面有个.env文件,如果没有则会有个.env.example然后将此文件修改成.env文件即可)打开文件:找到:DB_HOST=127.0.0.1  //连 ...

  6. vs2015编译EasyDarwin开源流媒体服务器Linux版本调研

    本文转自EasyDarwin团队成员Alex的博客:http://blog.csdn.net/cai6811376/article/details/51843196 之前InfoQ的一篇文章提到用vs ...

  7. wcf系列(一)--- 寄宿方式

    一.自我寄宿(self-hosting) 1.wcf采用基于终结点(Endpoint)的通信手段:终结点由:地址(Address)+绑定(Binding)+契约(Contract)组成:  Enpoi ...

  8. 2018.11.06 生成器函数进阶&列表推导式&生成器表达式

    1.生成器函数进阶 2.列表推导式 3.生成器表达式

  9. redis事务和乐观锁

    1 MULTI/EXEC 执行本事务. MULTI set foo bar get foo set foo hello EXEC 在EXEC执行前,三条命令都放入队列中,然后EXEC触发执行.没有回滚 ...

  10. Android笔记之平移View

    方法有多种,只讲一种 使用View.setLeft和View.setRight 对于wrap_content的View,要横向平移,setRight是必要的,否则View的宽度会被改变(right应设 ...