题意:

  前面3/4的英文都是废话。将一个正整数看成字符串,给定一个k,问区间[L,R]中严格的LIS=k的数有多少个?

思路:

  实在没有想到字符0~9最多才10种,况且也符合O(nlogn)求LIS的特点,所以用状态压缩可以解决。

  看到状态压缩的字眼基本就会做了,增加一维来保存当前LIS的状态。由于求LIS时的辅助数组d[i]表示长度为i的LIS最后一个元素,d数组是严格递增的,所以好好利用d数组的特性来设计状态压缩才是关键。压缩的状态0101可以表示:仅有0和2在数组d中,即d[1]=0,d[2]=2的意思。状态的设计方法有多种。

  此题在考虑前导零问题时,逐个枚举位数,可以这样做是因为如果位数超过了1,则最后一个数位若为0是不会对结果构成影响的,因为最后的0都不会被考虑在LIS中。而对于那些个位数为0(或者说后缀0)会对结果产生影响的,最好是不要这样用了(例如spoj Balanced Numbers就不可以)。

 #include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
#define ULL unsigned long long
using namespace std;
const double PI = acos(-1.0);
const int N=; LL f[N][<<][], bit[N];
//[位数][状态][k] int insert(int s,bool flag,int pos) //修改状态
{
for(int i=pos; i<=&&flag; i++) //找到第一位>=pos的,抹去
if(s&(<<i))
{
s^=(<<i);
break;
}
return s|(<<pos);
} int gethigh(int s) //获取LIS最大元素,即d[len]。
{
for(int i=; i>=; i--) if(s&(<<i)) return i;
return -;
} LL dfs(int i,int up,int s,int k,bool e)
{
//up为总位数,s为状态,k为仍需一段len=k的串来组成LIS=K的
if(i==) return k==;
if(i<k) return ; //剩下的位数已不够k个,不能组成LIS=k
if(!e && ~f[i][s][k] ) return f[i][s][k]; LL ans=;
int d= i==up? : ; //为了解决前缀0的情况,起始不为0
int u= e? bit[i]: ; int h=gethigh(s); //LIS的最大元素
for( ; d<=u; d++)
{
if(d>h) ans+=dfs(i-,up,insert(s,,d),k-,e&&d==u);
else ans+=dfs(i-,up,insert(s,,d),k,e&&d==u); //LIS长度不变
}
return e? ans: f[i][s][k]=ans;
} LL cal(LL n,int k)
{
if(n==) return ;
int len=;
while(n) //拆数
{
bit[++len]=n%;
n/=;
}
LL ans=;
for(int i=k; i<len; i++) //为了解决前导0问题,逐个枚举
ans+=dfs(i,i,,k,false);
if(len>=k)
ans+=dfs(len,len,,k,true);
return ans;
} int main()
{
//freopen("input.txt","r",stdin);
memset(f, -, sizeof(f));
LL L, R;int t, K, Case=;
cin>>t;
while( t-- )
{
scanf("%lld%lld%d",&L,&R,&K);
printf("Case #%d: %lld\n", ++Case, cal(R,K)-cal(L-,K));
}
return ;
}

AC代码

HDU 4352 XHXJ's LIS (数位DP,状压)的更多相关文章

  1. HDU.4352.XHXJ's LIS(数位DP 状压 LIS)

    题目链接 \(Description\) 求\([l,r]\)中有多少个数,满足把这个数的每一位从高位到低位写下来,其LIS长度为\(k\). \(Solution\) 数位DP. 至于怎么求LIS, ...

  2. hdu 4352 XHXJ's LIS(数位dp+状压)

    Problem Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefull ...

  3. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  4. $HDU$ 4352 ${XHXJ}'s LIS$ 数位$dp$

    正解:数位$dp$+状压$dp$ 解题报告: 传送门! 题意大概就是港,给定$[l,r]$,求区间内满足$LIS$长度为$k$的数的数量,其中$LIS$的定义并不要求连续$QwQ$ 思路还算有新意辣$ ...

  5. hdu 4352 XHXJ's LIS 数位dp+状态压缩

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others ...

  6. HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)

    题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量. 析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量 ...

  7. hdu 4352 XHXJ's LIS 数位DP+最长上升子序列

    题目描述 #define xhxj (Xin Hang senior sister(学姐))If you do not know xhxj, then carefully reading the en ...

  8. hdu 4352 XHXJ's LIS 数位DP

    数位DP!dp[i][j][k]:第i位数,状态为j,长度为k 代码如下: #include<iostream> #include<stdio.h> #include<a ...

  9. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  10. HDU 4352 XHXJ's LIS ★(数位DP)

    题意 求区间[L,R]内满足各位数构成的数列的最长上升子序列长度为K的数的个数. 思路 一开始的思路是枚举数位,最后判断LIS长度.但是这样的话需要全局数组存枚举的各位数字,同时dp数组的区间唯一性也 ...

随机推荐

  1. Hibernate的auto-import属性详解

    auto-import是什么意思呢? 我们经常会写这样一个HQL语句: from User u where u.name='罗灿锋'; 绝大多数时候,这样写是不会发生问题的. hibernate在处理 ...

  2. React Native环境搭建(iOS、Mac)

    http://reactnative.cn/docs/0.42/getting-started.html#content 1.安装Homebrew Homebrew, Mac系统的包管理器,用于安装N ...

  3. Jmeter获取登录的token

    这是之前在公司一个实际的接口性能测试项目中,遇到的问题.现在有空总结一下.我们所做的项目一般都需要先登录,这个时候就需要把登录和所要测试的接口分为两个事务,Jmeter中即为事务控制器. 1.首先,我 ...

  4. Vue.js中,如何自己维护路由跳转记录?

    在Vue的项目中,如果我们想要做返回.回退操作时,一般会调用router.go(n)这个api,但是实际操作中,使用这个api有风险,就是会让用户跳出当前应用,因为它记录的是浏览器的访问记录,而不是你 ...

  5. Android开发,关于aar你应该知道的

    https://yangbo.tech/2015/10/17/all-about-aar/ 背景 在软件工程中,分治是最基本的设计原理,就如同现实中的砖.瓦.钢筋.水泥一样,模块化.组件化的分工,让我 ...

  6. 加权并查集(银河英雄传说,Cube Stacking)

    洛谷P1196 银河英雄传说 题目描述 公元五八○一年,地球居民迁移至金牛座α第二行星,在那里发表银河联邦创立宣言,同年改元为宇宙历元年,并开始向银河系深处拓展.宇宙历七九九年,银河系的两大军事集团在 ...

  7. JDBC基础原理

    一.DCL(了解) -- 1. 创建用户CREATE USER 'zhangsan'@'%' IDENTIFIED BY 'zhangsan';-- 2. 用户授权GRANT ALL ON heima ...

  8. Maven打包Spark程序Pom配置

    scala和java混合的spark程序之前使用其他配置始终有报找不到包的情况,尝试了一下如下配置可以打包成功.<build> <pluginManagement> <p ...

  9. java基础第九篇之final和内部类等

    final关键字:final:最终,终极 final:作用:修饰类,变量,方法.成员变量的访问 1.final修饰变量: final修饰局部变量: 把这个局部变量 变成一个厂里,这个厂里只能被赋值一次 ...

  10. docker镜像创建

    1. 首选要创建一个Dockerfile文件,内容如下: FROM alpine:latest MAINTAINER  lobin <lobin.hotmail.com> RUN apk ...