题意:

  求给定区间[X,Y]中满足下列条件的整数个数:这个数恰好等于K个互不相等的,B的整数次幂之和。例如,设X=15,Y=20,K=2,B=2,则有且仅有下列三个数满足了要求:  17 = 24+20, 18 = 24+21, 20 = 24+22。(以B为底数,幂次数不允许相同)

  参考论文--》》论文中的题。

思路:

  论文倒是容易看明白,但是这个转成B进制的思想一直转不过来。其实转成B进制后变成 a1*Bn+a2*Bn-1...an*B0。其中ai是系数。范围是[0,B-1]。但是看了论文知道,里面画的那棵01树(树上的01就是代表系数a),只有从根走到叶子,经过的1的个数为K才是满足要求的。那么如果a大于0怎么办?那么从树上该点开始的整棵子树就可以全部进行考虑了。而如果刚好考虑的位为1的呢?那么取该位为0的那棵子树就行了。

  两种实现

 //#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
using namespace std;
const double PI = acos(-1.0);
const int N=; //注意大小 int f[N][N]; void pre_cal() //预处理组合数
{
f[][]=;
for(int i=; i<N; i++) //位数
{
f[i][]=f[i][i]=;
for(int j=; j<i; j++) //多少个1
{
f[i][j]=f[i-][j]+f[i-][j-];
}
}
} int bit[N];
int cal(int n,int k,int b)
{
memset(bit, , sizeof(bit));
int len=, cnt=, ans=;
while(n) //转成b进制
{
bit[++len]=n%b;
n/=b;
}
for(int i=len; i>; i--)
{
if(bit[i]>)
{
ans+=f[i][k-cnt]; //取整棵子树
break;
}
else if( bit[i]== )
{
ans+=f[i-][k-cnt]; //统计左边的
if(++cnt>k) break; //已超
}
}
if(cnt==k) ans++;
return ans;
} int main()
{
//freopen("input.txt","r",stdin);
pre_cal();
int x, y, k, b;
while(~scanf("%d%d%d%d",&x,&y,&k,&b))
printf("%d\n", cal(y,k,b)-cal(x-,k,b));
return ;
}

AC代码

 //#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define INF 0x7f3f3f3f
#define LL long long
using namespace std;
const double PI = acos(-1.0);
const int N=; int f[N][N];
void pre_cal() //预处理组合数
{
f[][]=;
for(int i=; i<N; i++) //位数
{
f[i][]=f[i][i]=;
for(int j=; j<i; j++) //多少个1
{
f[i][j]=f[i-][j]+f[i-][j-];
}
}
}
int bit[N];
int cal(int n,int k,int b)
{
memset(bit, , sizeof(bit));
int len=, cnt=, ans=, flag=;
while(n) //转成b进制
{
bit[++len]=n%b;
n/=b;
if(bit[len]>) flag=;
} if(flag==)
{
//找到第一位大于1的,改为1,然后后面可以全部改成1了
for(int i=len; i>; i--)
if(bit[i]>)
{
for(int j=i; j>; j--) bit[j]=;
break;
}
} for(int i=len; i>; i--)
{
if( bit[i] )
{
ans+=f[i-][k-cnt]; //统计左边的
if(++cnt>k) break; //已超
}
}
if(cnt==k) ans++;
return ans;
} int main()
{
//freopen("input.txt","r",stdin);
pre_cal();
int x, y, k, b;
while(~scanf("%d%d%d%d",&x,&y,&k,&b))
printf("%d\n", cal(y,k,b)-cal(x-,k,b));
return ;
}

AC代码

URAL 1057 Amount of Degrees (数位DP,入门)的更多相关文章

  1. URAL 1057. Amount of Degrees(数位DP)

    题目链接 我看错题了...都是泪啊,不存在3*4^2这种情况...系数必须为1... #include <cstdio> #include <cstring> #include ...

  2. [ACM] ural 1057 Amount of degrees (数位统计)

    1057. Amount of Degrees Time limit: 1.0 second Memory limit: 64 MB Create a code to determine the am ...

  3. Ural 1057 Amount of Degrees

    Description 问[L,R]中有多少能表示k个b次幂之和. Sol 数位DP. 当2进制时. 建出一个二叉树, \(f[i][j]\) 表示长度为 \(i\) 有 \(j\) 个1的个数. 递 ...

  4. Ural1057 - Amount of Degrees(数位DP)

    题目大意 求给定区间[X,Y]中满足下列条件的整数个数:这个数恰好等于K个互不相等的B的整数次幂之和.例如,设X=15,Y=20,K=2,B=2,则有且仅有下列三个数满足题意: 输入:第一行包含两个整 ...

  5. URAL 1057 Amount of Degrees (数位dp)

    Create a code to determine the amount of integers, lying in the set [X;Y] and being a sum of exactly ...

  6. ural 1057 Amount of degrees 【数位dp】

    题意:求(x--y)区间转化为 c 进制 1 的个数为 k 的数的出现次数. 分析:发现其满足区间减法,所以能够求直接求0---x 的转化为 c 进制中 1 的个数为k的数的出现次数. 首先用一个数组 ...

  7. [ural1057][Amount of Degrees] (数位dp+进制模型)

    Discription Create a code to determine the amount of integers, lying in the set [X; Y] and being a s ...

  8. Timus Online Judge 1057. Amount of Degrees(数位dp)

    1057. Amount of Degrees Time limit: 1.0 second Memory limit: 64 MB Create a code to determine the am ...

  9. xbz分组题B 吉利数字 数位dp入门

    B吉利数字时限:1s [题目描述]算卦大湿biboyouyun最近得出一个神奇的结论,如果一个数字,它的各个数位相加能够被10整除,则称它为吉利数.现在叫你计算某个区间内有多少个吉利数字. [输入]第 ...

随机推荐

  1. 11_listview入门

    listview是在安卓开发当中很常用的API. 以垂直滚动的列表的方式展示条目的控件. ListAdapter是一个桥梁,给ListView提供数据的.数据是由适配器来进行提供的.Adapter是数 ...

  2. CodeForces 1097G. Vladislav and a Great Legend

    题目简述:给定$n \leq 10^5$个节点的树$T = (V, E)$,令$X \subseteq V$表示一个非空节点集合,定义$f(X)$为包含$X$的最小子树的边数.求 $$ \sum_{\ ...

  3. xgene:之illumina,,ion-torrent

    illumina技术: 工具:flowcell(流动池):8通道,每个通道都有 2种DNA引物 种在玻璃表面(用共价键连到Flowcell上),这引物和文库中的接头互补    Flowcell:8个l ...

  4. Spring入门第八课

    看如下代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http:// ...

  5. 写守护进程时碰到open函数的参数,没记住

    今天写一个最简单的守护进程, 要成为一个守护进程,其实很简单了.主要步骤就4步: 1,创建进程. 2,父进程退出. 3,成为会话的头领进程. 4,将工作目录改成根目录,并把标准输入输出重定向到空设备. ...

  6. Javascript实现打开或退出浏览器全屏

    废话不多说,直接上代码: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www. ...

  7. 搭建 Keras

    首先安装ipython ipython安装完成以后出现如下界面 然后安装theano 中途安装因为网络不好,造成超时而停止安装或者停滞不前,则按下Ctrl+C,停止此操作,或者关掉Anaconda P ...

  8. Solr 6.7学习笔记(02)-- 配置文件 managed-schema (schema.xml) - Analyzer, tokenizer(4)

    有些时候,我们需要自定义 fieldType.下面的例子就是自定义的 fieldType,<analyzer type="index"> 表示索引时怎么处理,<a ...

  9. cogs 721. [SDOI2007] 线性方程组

    721. [SDOI2007] 线性方程组 ★★   输入文件:gaess.in   输出文件:gaess.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 已知 n 元 ...

  10. uoj#402. 【CTSC2018】混合果汁(主席树+二分)

    传送门 我们先把果汁按照美味度排序,枚举\(d\),那么肯定是贪心的选择美味程度不小于\(d\)的且最便宜的果汁 发现\(d\)可以二分,那么在主席树上二分就可以了 据说还有整体二分的大佬然而我并不会 ...