The Review Plan I-禁位排列和容斥原理
The Review Plan I
Michael takes the Discrete Mathematics course in this semester. Now it's close to the final exam, and he wants to take a complete review of this course.
The whole book he needs to review has N chapter, because of the knowledge system of the course is kinds of discrete as its name, and due to his perfectionism, he wants to arrange exactly N days to take his review, and one chapter by each day.
But at the same time, he has other courses to review and he also has to take time to hang out with his girlfriend or do some other things. So the free time he has in each day is different, he can not finish a big chapter in some particular busy days.
To make his perfect review plan, he needs you to help him.
Input
There are multiple test cases. For each test case:
The first line contains two integers N(1≤N≤50), M(0≤M≤25), N is the number of the days and also the number of the chapters in the book.
Then followed by M lines. Each line contains two integers D(1≤D≤N) and C(1≤C≤N), means at the Dth day he can not finish the review of the Cth chapter.
There is a blank line between every two cases.
Process to the end of input.
Output
One line for each case. The number of the different appropriate plans module 55566677.
Sample Input
4 3
1 2
4 3
2 1 6 5
1 1
2 6
3 5
4 4
3 4
Sample Output
11
284
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
using namespace std;
#define mod 55566677
long long day[],zhang[],c[],i,ss,m,n,gx[][];
struct PP
{
int d,z;
}chi[];
int rc(int x,int y)
{
if(x>=m)
{
if(y&)ss-=c[n-y];
else ss+=c[n-y];
ss%=mod;
ss=(ss+mod)%mod;
return ;
}
rc(x+,y);
if(day[chi[x].d]==&&zhang[chi[x].z]==)
{
day[chi[x].d]=;zhang[chi[x].z]=;
rc(x+,y+);
day[chi[x].d]=;zhang[chi[x].z]=;
}
}
int main()
{
c[]=;c[]=;
for(i=;i<=;i++)c[i]=(c[i-]*i)%mod;
while(cin>>n>>m&&n+m!=)
{
ss=;
memset(day,,sizeof(day));
memset(zhang,,sizeof(zhang));
memset(gx,,sizeof(gx));
for(i=;i<m;i++)
{
cin>>chi[i].d>>chi[i].z;
if(gx[chi[i].d][chi[i].z]==)gx[chi[i].d][chi[i].z]=;
else {m--;i--;}
}
rc(,);
ss=(ss+mod)%mod;
cout<<ss<<endl;
}
return ;
}
The Review Plan I-禁位排列和容斥原理的更多相关文章
- (转)ZOJ 3687 The Review Plan I(禁为排列)
The Review Plan I Time Limit: 5 Seconds Memory Limit: 65536 KB Michael takes the Discrete Mathe ...
- ZOJ 3687 The Review Plan I
The Review Plan I Time Limit: 5000ms Memory Limit: 65536KB This problem will be judged on ZJU. Origi ...
- [Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理)
[Codeforces 1228E]Another Filling the Grid (排列组合+容斥原理) 题面 一个\(n \times n\)的格子,每个格子里可以填\([1,k]\)内的整数. ...
- [Codeforces 997C]Sky Full of Stars(排列组合+容斥原理)
[Codeforces 997C]Sky Full of Stars(排列组合+容斥原理) 题面 用3种颜色对\(n×n\)的格子染色,问至少有一行或一列只有一种颜色的方案数.\((n≤10^6)\) ...
- ZOJ 3687 The Review Plan I 容斥原理
一道纯粹的容斥原理题!!不过有一个trick,就是会出现重复的,害我WA了几次!! 代码: #include<iostream> #include<cstdio> #inclu ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- 组合数学:容斥原理(HDU1976)
●容斥原理所研究的问题是与若干有限集的交.并或差有关的计数. ●在实际中, 有时要计算具有某种性质的元素个数. 例: 某单位举办一个外语培训班, 开设英语, 法语两门课.设U为该单位所有人集合, A, ...
- 【译】N 皇后问题 – 构造法原理与证明 时间复杂度O(1)
[原] E.J.Hoffman; J.C.Loessi; R.C.Moore The Johns Hopkins University Applied Physics Laboratory *[译]* ...
- N皇后问题(位运算实现)
本文参考Matrix67的位运算相关的博文. 顺道列出Matrix67的位运算及其使用技巧 (一) (二) (三) (四),很不错的文章,非常值得一看. 主要就其中的N皇后问题,给出C++位运算实现版 ...
随机推荐
- oracle中视图V$PGA_TARGET_ADVICE的用法
看一下这个视图能给我们带来什么样的信息(视图中每个列都很有帮助):sys@ora10g> SELECT pga_target_for_estimate / 1024 / 1024 " ...
- C语言序列点问题总结(大多数高等教育C语言教学课程的漏洞)
C语言序列点总结 2013年11月21于浙大华家池 C 语言副作用: (side effect)是指对数据对象或者文件的修改. 例如,语句 v = 99;的副作用是把 v 的值修改成 99. C语言序 ...
- Mysql 的存储引擎,myisam和innodb的区别。
简单的表达. MyISAM 是非事务的存储引擎. innodb是支持事务的存储引擎. innodb的引擎比较适合于插入和更新操作比较多的应用 而MyISAM 则适合用于频繁查询的应用 MyISAM - ...
- VMware 报错“Intel VT-x处于禁止状态”
VMware Workstation 10虚拟机安装64位windows server 2008 R2系统时报错“Intel VT-x处于禁止状态”,如下图. 工具/原料 VMware Wor ...
- 【BZOJ3065】带插入区间K小值 替罪羊树+权值线段树
[BZOJ3065]带插入区间K小值 Description 从前有n只跳蚤排成一行做早操,每只跳蚤都有自己的一个弹跳力a[i].跳蚤国王看着这些跳蚤国欣欣向荣的情景,感到非常高兴.这时跳蚤国王决定理 ...
- EasyNVR RTSP转RTMP-HLS流媒体服务器前端构建之_关于接口调用常见的一些问题(401 Unauthorized)
在之前的博客<EasyNVR H5流媒体服务器方案架构设计之视频能力平台>中我们描述了EasyNVR的定位,作为一个能力平台来进行功能的输出: 也就是说,在通常情况下,我们将一套视频的应用 ...
- meaven环境变量配置
首先,先到官网去下载maven.这里是官网的地址:http://maven.apache.org/download.cgi 请选择最新的版本下载,这里咱们下载的是apache-maven-3.1.1 ...
- 题解 P1001 【A+B Problem】
#include<iostream> using namespace std; #define I int a,b; #define AK cin>>a>>b; # ...
- 我的Java开发学习之旅------>求N内所有的素数
一.素数的概念 质数(prime number)又称素数,有无限个.一个大于1的自然数,除了1和它本身外,不能被其他自然数(质数)整除,换句话说就是该数除了1和它本身以外不再有其他的因数:否则称为合数 ...
- 【zabbix】微信告警消息模版
下面给出了一个zabbix微信告警消息的模版, 消息最后加上#号和短横线的设计有两个原因: 1,zabbix的微信告警消息总是被截断,比如最后一个告警时间,如果没有最后一行#号,在微信上看的时候时间不 ...