再不写总结我又会忘掉啊啊啊啊啊啊啊啊啊

这个\(min-25\)筛主要用来求一个积性函数的前缀和,就像这样\[\sum_{i=1}^n f(i)\]
不过这个积性函数要满足两个条件:质数\(p\)的函数值\(f(p)\)有个多项式表达,\(f(p^c)\)能够快速计算

\(min-25\)筛求前缀和的过程可以看成把所有数贡献分成质数贡献和合数贡献计算(可能有\(1\)的贡献).先考虑质数的贡献

...

好像除了暴力没有更好的办法啊

不过可以发现一个数\(>\sqrt{n}\)的质因子最多只有一个,也就是任意合数至少会有一个\(\le\sqrt{n}\)的质因子,所以可以枚举\(\le\sqrt{n}\)的质因数筛掉合数的贡献.

后面记\(P\)为质数集合,\(P_j\)为从小到大第\(j\)个质数.这里设\(g(n,j)\)表示\(\le n\)的所有质数以及最小质因数\(>P_j\)的数的贡献.考虑从\(g(n,j-1)\)转移到\(g(n,j)\),如果\(P_j>\sqrt{n}\),那么所有数都是质数了,所以可以直接赋值过来;否则还要减去最小质因子\(=P_j\)的数贡献.先把所有这样的数\(/ P_j\),除完后\(i\)对应到\(\frac{i}{P_j}\),同时最小质因子也要满足\(\ge P_j\),所以这一部分就是\(f(P_j)g(\lfloor\frac{n}{P_j}\rfloor,j-1)\).不过这样也减去了一些\(<P_j\)的质数的贡献,要加回来,所以综上所述,转移可以这样写\[g(n,j)=\begin{cases}g(n,j-1)&P_j\ge \sqrt{n}\\ g(n,j-1)-f(P_j)(g(\lfloor\frac{n}{P_j}\rfloor,j-1)-g(P_j-1,j-1))&P_j< \sqrt{n}\end{cases}\]

那个\(g(P_j-1,j-1)\)就是\(\sum_{k=1}^{j-1}f(P_k)\)

可以发现\(g(n,|P|)\)就是所有\(\le n\)质数的贡献(记最大的\(\le \sqrt{n}\)的质数为\(P_m\),其实只要做到\(g(n,m)\)就行了)

然后考虑要求的,类似于上面过程,记\(S(n,j)\)为\(\le n\)所有最小质因子\(\ge P_j\)的数的贡献.首先考虑质数的贡献,也就是\[\sum_{k=j}^{|P|}f(P_k)=g(n,m)-g(P_j-1,j-1)\]

然后是合数贡献.先枚举那些合数的最小质因子\(P_k\),然后枚举它的出现次数\(c\),那么剩下数的贡献是\(S(\lfloor\frac{n}{{P_k}^c}\rfloor,k+1)\),因为是积性函数,所以这一部分的乘上\(f({P_k}^c)\)就是对应的数的贡献.但是这样子没有算到\({P_k}^c\)的贡献,所以额外加上,转移可以这样写\[S(n,j)=g(n,m)-g(P_j-1,j-1)+\sum_{k\ge j}\sum_{c}f({P_k}^c)(S(\lfloor\frac{n}{{P_k}^c}\rfloor,k+1)+[c>1])\]

然后递归处理即可

还有就是做的时候,只有形如\(\lfloor\frac{n}{i}\rfloor\)这样的数才是有用的,所以可以给每个这样的数编号,就能用数组代替map

例题先咕了

[总结] min-25筛的更多相关文章

  1. $Min\_25$筛学习笔记

    \(Min\_25\)筛学习笔记 这种神仙东西不写点东西一下就忘了QAQ 资料和代码出处 资料2 资料3 打死我也不承认参考了yyb的 \(Min\_25\)筛可以干嘛?下文中未特殊说明\(P\)均指 ...

  2. 「笔记」$Min\_25$筛

    总之我也不知道这个奇怪的名字是怎么来的. \(Min\_25\)筛用来计算一类积性函数前缀和. 如果一个积性函数\(F(x)\)在质数单点是一个可以快速计算的关于此质数的多项式. 那么可以用\(Min ...

  3. Min_25筛学习笔记

    感觉好好用啊 Luogu上的杜教筛模版题一发 Min_25抢到了 rank1 $ Updated \ on 11.29 $被 STO txc ORZ踩爆啦 前言 $ Min$_$25$筛可以求积性函数 ...

  4. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  5. 【51NOD 1847】奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数)

    [51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\( ...

  6. 【LOJ#572】Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛)

    [LOJ#572]Misaka Network 与求和(莫比乌斯反演,杜教筛,min_25筛) 题面 LOJ \[ans=\sum_{i=1}^n\sum_{j=1}^n f(gcd(i,j))^k\ ...

  7. uoj#188. 【UR #13】Sanrd(Min_25筛)

    题面 传送门 题解 这是一道语文题 不难看出,题目所求即为\(l\)到\(r\)中每个数的次大质因子 我们考虑\(Min\_25\)筛的过程,设 \[S(n,j)=\sum_{i=1}^nsec_p( ...

  8. [学习笔记]min_25筛

    神佬yyb 神佬zsy 想不到花了两个小时的时间看 \(min\_25\) 筛就看懂了 实际去追了一下魔禁3 我们先举个例子.如求 \[\sum_{i=1}^{n}f(i)\] 其中 \(f(i)\) ...

  9. 【UOJ#188】Sanrd(min_25筛)

    [UOJ#188]Sanrd(min_25筛) 题面 UOJ 题解 今天菊开讲的题目.(千古神犇陈菊开,扑通扑通跪下来) 题目要求的就是所有数的次大质因子的和. 这个部分和\(min\_25\)筛中枚 ...

  10. uoj#448. 【集训队作业2018】人类的本质(Min_25筛+拉格朗日插值)

    题面 传送门 题解 肝了整整一天--膜拜yww和cx巨巨--(虽然它们的题解里我就没看懂几个字) 请备好草稿纸和笔,这种题目就是需要耐心推倒 题目所求是这么一个东西 \[ \begin{aligned ...

随机推荐

  1. 关于ajaxfileupload的使用方法以及一些问题

    使用问题: 1.ajax-fileupload.js handleError 异常 由于本来handleError方法是jquery的方法,但jquery到了某个版本这个方法就去掉了没有了 所以最简单 ...

  2. Druid 在spring中的配置

    Spring配置中dataSource配置 <bean id="dataSource" class="com.alibaba.druid.pool.DruidDat ...

  3. Newtonsoft.Json null值不序列化

    如果对当前序列化的实体全部生效的话使用如下: var jSetting = new JsonSerializerSettings {NullValueHandling = NullValueHandl ...

  4. XXX.h:143: error: expected declaration specifiers or ‘...’ before ‘YYY’

    出现上面头文件错误,原因是定义YYY的头和XXX.h互相包含了

  5. Centos 6.5 下Nginx安装部署https服务器

    一般我们都需要先装pcre, zlib,前者为了重写rewrite,后者为了gzip压缩.1.选定源码目录选定目录 /usr/local/cd /usr/local/2.安装PCRE库cd /usr/ ...

  6. oracle查看监听状态

    产看状态命令:lsnrctl status 启动监听:lsnrctl start 关闭监听:lsnrctl stop LSNRCTL for 32-bit Windows: Version 10.2. ...

  7. C++ Queues(队列)

    C++ Queues(队列) C++队列是一种容器适配器,它给予程序员一种先进先出(FIFO)的数据结构.1.back() 返回一个引用,指向最后一个元素2.empty() 如果队列空则返回真3.fr ...

  8. 19个很有用的 JavaScript库推荐

    流行的 JavaScript 库有jQuery,MooTools,Prototype,Dojo和YUI等,这些 JavaScript 库功能丰富,加上它们众多的插件,几乎能实现任何你需要的功能 然而需 ...

  9. Git入门 时光穿梭鸡 版本回退 工作区 暂存区

    分布式集中式 CVS及SVN都是集中式的版本控制系统 , 而Git是分布式版本控制系统 集中式版本控制系统,版本库是集中存放在中央服务器的, 而干活的时候,用的都是自己的电脑,所以要先从中央服务器取得 ...

  10. JS动态append之后点击事件无效

    今天做项目用了append向HTML里面添加结构代码,代码添加之后,单击事件就没反应了.搞得我一脸懵逼,调了代码很久实在不行,我百度了一下才发现,append添加的节点单击事件是不会生效的. 原因: ...