c++树及树与二叉树的转换
此算法中的树结构为“左儿子有兄弟链接结构”
在这样的一个二叉树中,一个节点的左分支是他的大儿子节点,右分支为他的大兄弟节点。
这里讲的树有递归前根,中根,后根遍历,插入节点,插入兄弟节点,查找结点,释放内存这些功能。
重点说一下查找节点这一算法:
pSTreeNode CTree::Search( pSTreeNode pNode, TreeDataType Value )
{
if ( pNode == NULL )
return NULL;
if ( pNode->data == Value )
return pNode;
if ( pNode->pFirstChild == NULL && pNode->pNextBrother == NULL )
return NULL;
else
{
if ( pNode->pFirstChild != NULL ) //首先判断根节点的左儿子节点是否为空,若不为空,通过引入指针来寻找节点
{
pSTreeNode pNodeTemp = Search( pNode->pFirstChild, Value );
if ( pNodeTemp != NULL )
return pNodeTemp;
else
{
return Search( pNode->pNextBrother, Value );
}
}
else //否则在根节点的右兄弟节点中寻找
return Search( pNode->pNextBrother, Value );
}
}
完整代码如下:
#include <iostream>
using namespace std;
typedef struct STreeNode* pSTreeNode;
typedef int TreeDataType;
//定义结构体
struct STreeNode
{
TreeDataType data;
pSTreeNode pFirstChild;
pSTreeNode pNextBrother;
//结构体构造函数
STreeNode( TreeDataType Value )
{
data = Value;
pFirstChild = NULL;
pNextBrother = NULL;
}
};
//定义类
class CTree
{
public:
CTree();
CTree( TreeDataType Value );
~CTree();
public:
void Insert( TreeDataType parentValue, TreeDataType Value ); // parentValue:该点的父亲节点;Value:该点的值
void InsertBrother( pSTreeNode pParentNode, TreeDataType Value );
pSTreeNode Search( pSTreeNode pNode, TreeDataType Value );
void Preorder( pSTreeNode pNode ); // 前序遍历
void Inorder( pSTreeNode pNode ); // 中序遍历
void postorder( pSTreeNode pNode ); // 后序遍历
void FreeMemory( pSTreeNode pNode ); // 释放内存
public:
pSTreeNode pRoot;
};
//构造函数
CTree::CTree()
{
pRoot = NULL;
}
//构造函数
CTree::CTree( TreeDataType Value )
{
pRoot = new STreeNode( Value );
}
//析构函数
CTree::~CTree()
{
if (pRoot == NULL )
return;
FreeMemory( pRoot );
}
//释放内存
void CTree::FreeMemory( pSTreeNode pNode )
{
if ( pNode == NULL )
return;
if ( pNode->pFirstChild != NULL )
FreeMemory( pNode->pFirstChild );
if ( pNode->pNextBrother != NULL )
FreeMemory( pNode->pNextBrother );
delete pNode;
pNode = NULL;
}
//插入节点
void CTree::Insert( TreeDataType parentValue, TreeDataType Value )
{
if ( pRoot == NULL )
return;
pSTreeNode pFindNode = Search( pRoot, parentValue );
if ( pFindNode == NULL )
return;
if ( pFindNode->pFirstChild == NULL )
{
pFindNode->pFirstChild = new STreeNode( Value );
return;
}
else
{
InsertBrother( pFindNode->pFirstChild, Value );
return;
}
}
//插入右兄弟节点
void CTree::InsertBrother( pSTreeNode pBrotherNode, TreeDataType Value )
{
if ( pBrotherNode->pNextBrother != NULL )
InsertBrother( pBrotherNode->pNextBrother, Value );
else
{
pBrotherNode->pNextBrother = new STreeNode( Value );
return;
}
}
//查找函数
pSTreeNode CTree::Search( pSTreeNode pNode, TreeDataType Value )
{
if ( pNode == NULL )
return NULL;
if ( pNode->data == Value )
return pNode;
if ( pNode->pFirstChild == NULL && pNode->pNextBrother == NULL )
return NULL;
else
{
if ( pNode->pFirstChild != NULL )
{
pSTreeNode pNodeTemp = Search( pNode->pFirstChild, Value );
if ( pNodeTemp != NULL )
return pNodeTemp;
else
{
return Search( pNode->pNextBrother, Value );
}
}
else
return Search( pNode->pNextBrother, Value );
}
}
//前序遍历
void CTree::Preorder( pSTreeNode pNode )
{
if (pNode == NULL)
return;
cout << " " << pNode->data << " ";
Preorder( pNode->pFirstChild );
Preorder( pNode->pNextBrother );
}
//中序遍历
void CTree::Inorder( pSTreeNode pNode )
{
if ( pNode == NULL )
return;
Inorder( pNode->pFirstChild );
cout << " " << pNode->data << " ";
Inorder( pNode->pNextBrother );
}
//后序遍历
void CTree::postorder( pSTreeNode pNode )
{
if ( pNode == NULL )
return;
postorder( pNode->pFirstChild );
postorder( pNode->pNextBrother );
cout << " " << pNode->data << " ";
}
//主函数
int main()
{
CTree* pTree = new CTree( 1 );
pTree->Insert( 1, 2 );
pTree->Insert( 1, 3 );
pTree->Insert( 1, 4 );
pTree->Insert( 1, 5 );
pTree->Insert( 1, 6 );
pTree->Insert( 1, 7 );
pTree->Insert( 4, 8 );
pTree->Insert( 5, 9 );
pTree->Insert( 5, 10 );
pTree->Insert( 6, 11 );
pTree->Insert( 6, 12 );
pTree->Insert( 6, 13 );
pTree->Insert( 10, 14 );
pTree->Insert( 10, 15 );
cout << "前序遍历:" << endl;
pTree->Preorder( pTree->pRoot );
cout << endl;
cout << "中序遍历:" << endl;
pTree->Inorder( pTree->pRoot );
cout << endl;
cout << "后序遍历:" << endl;
pTree->postorder( pTree->pRoot );
cout << endl;
delete pTree;
pTree = NULL;
return 0;
}
c++树及树与二叉树的转换的更多相关文章
- 哈夫曼树【最优二叉树】【Huffman】
[转载]只为让价值共享,如有侵权敬请见谅! 一.哈夫曼树的概念和定义 什么是哈夫曼树? 让我们先举一个例子. 判定树: 在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设 ...
- 树(二叉树 & 二叉搜索树 & 哈夫曼树 & 字典树)
树:n(n>=0)个节点的有限集.有且只有一个root,子树的个数没有限制但互不相交.结点拥有的子树个数就是该结点的度(Degree).度为0的是叶结点,除根结点和叶结点,其他的是内部结点.结点 ...
- Atitit 常见的树形结构 红黑树 二叉树 B树 B+树 Trie树 attilax理解与总结
Atitit 常见的树形结构 红黑树 二叉树 B树 B+树 Trie树 attilax理解与总结 1.1. 树形结构-- 一对多的关系1 1.2. 树的相关术语: 1 1.3. 常见的树形结构 ...
- 以AVL树为例理解二叉树的旋转(Rotate)操作
树旋转是在二叉树中的一种子树调整操作, 每一次旋转并不影响对该二叉树进行中序遍历的结果. 树旋转通常应用于需要调整树的局部平衡性的场合. 树旋转包括两个不同的方式, 分别是左旋转和右旋转. 两种旋转呈 ...
- 数据结构(一)二叉树 & avl树 & 红黑树 & B-树 & B+树 & B*树 & R树
参考文档: avl树:http://lib.csdn.net/article/datastructure/9204 avl树:http://blog.csdn.net/javazejian/artic ...
- C# 表达式树 创建、生成、使用、lambda转成表达式树~表达式树的知识详解
笔者最近学了表达式树这一部分内容,为了加深理解,写文章巩固知识,如有错误,请评论指出~ 表达式树的概念 表达式树的创建有 Lambda法 和 组装法. 学习表达式树需要 委托.Lambda.Func& ...
- php数据结构课程---5、树(树的 存储方式 有哪些)
php数据结构课程---5.树(树的 存储方式 有哪些) 一.总结 一句话总结: 双亲表示法:data parent:$tree[1] = ["B",0]; 孩子表示法:data ...
- 字符串 --- KMP Eentend-Kmp 自动机 trie图 trie树 后缀树 后缀数组
涉及到字符串的问题,无外乎这样一些算法和数据结构:自动机 KMP算法 Extend-KMP 后缀树 后缀数组 trie树 trie图及其应用.当然这些都是比较高级的数据结构和算法,而这里面最常用和最熟 ...
- 【查找结构5】多路查找树/B~树/B+树
在前面专题中讲的BST.AVL.RBT都是典型的二叉查找树结构,其查找的时间复杂度与树高相关.那么降低树高自然对查找效率是有所帮助的.另外还有一个比较实际的问题:就是大量数据存储中,实现查询这样一个实 ...
- 【Todo】字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树
另开一文分析字符串相关的各种算法,以及用到的各种数据结构,包括前缀树后缀树等各种树. 先来一个汇总, 算法: 本文中提到的字符串匹配算法有:KMP, BM, Horspool, Sunday, BF, ...
随机推荐
- 利用jsplumb和碰撞检测自动生成流程图
使用jsplumb构建流程图模型时,有一个需求要求,选项可以从选项表中拖拽到指定容器,并且两个选项要接触到的时候才能连接起来,不接触不能连接.效果图如下 略丑- 因为这里用到了拖拽,拖放功能,所以用到 ...
- CSS样式表优化
前几天公司要模仿一家客户的网站模板来为另一客户新建一个模板,说白了就是换个数据源,然后样式表再小修小改一下就行了.但通过浏览器控制台下载素材时,发现这个网站开发的挺专业的,单就样式表而言,代码工整,注 ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
- 安装git 配置邮箱和用户名
git 查看用户名和邮箱地址 $ git config user.email $ git config user.name 运行命令来配置你的用户名和邮箱 $ git config --global ...
- 使ListView控件中的选择项高亮显示
实现效果: 知识运用: ListView控件的SelectedItems属性 //获取在ListView控件中被选中数据项的集合 public ListView.SelectedListViewIte ...
- numpy各函数简介之生成数组函数
1.empty(shape[, dtype, order]) 依据给定形状和类型(shape[, dtype, order])返回一个新的空数组. 参数: shape : 整数或者整型元组 定义返回数 ...
- 基础I/O
基础IO: c库文件IO操作接口:(详细查看c语言中的文件操作函数总结:https://www.cnblogs.com/cuckoo-/p/10560640.html) fopen 打开文件 fclo ...
- CUDA:Supercomputing for the Masses (用于大量数据的超级计算)-第四节
了解和使用共享内存(1) Rob Farber 是西北太平洋国家实验室(Pacific Northwest National Laboratory)的高级科研人员.他在多个国家级的实验室进行大型并行运 ...
- 操作系统(3)_CPU调度_李善平ppt
不只上面的四种,比如时间片到了也会引起调度. 具体的调度算法: fcfs简单,但是波动很大. 最高相应比算法,执行时间最长就应该等待的长点,比sjf多了一个等待时间的考虑. 硬件定时器和软件计数器共同 ...
- read指令使用方法
read命令用于从标准输入中读取输入单行,并将读取的单行根据IFS变量分裂成多个字段,并将分割后的字段分别赋值给指定的变量列表var_name.第一个字段分配给第一个变量var_name1,第二个字段 ...