洛谷传送门

cf传送门

这道题作为div.2的D题,被我一眼秒了我觉得十分荣幸,然后就开始写,然后就写了好久。

AC之后看网上的题解,发现好多最短路树的,猛然发现我写的好复杂啊,结果还看到了直接一遍dijkstra+贪心的标算。。。

只有我建的最短路图,再慢慢删边的吗。。。

说白了也是贪心啦,

策略十分显然:

1、如果有多条最短路到一个点,显然可以删到只剩一条,这也是最先需要做的(最短路树的不用管这个)

2、然后就只剩下一颗树了,topsort即可

代码:

#include<cstdio>
#include<queue>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
#define rg register
vector<int>s[300001];
long long dis[300001];int n,m,k,cnt,sum,x[300001],used[300001],y[300001],in[300001],out[300001],z[300001],pre[600001],nxt[600001],h[300001],v[600001],op[600001];
struct oo{int id;long long dis;};bool vis[300001];
bool operator<(oo a,oo b){return a.dis>b.dis;}
priority_queue<oo>q;
void add(int x,int y,int z,int now)
{
pre[++cnt]=y,nxt[cnt]=h[x];h[x]=cnt,v[cnt]=z;op[cnt]=now;
pre[++cnt]=x,nxt[cnt]=h[y];h[y]=cnt,v[cnt]=z;op[cnt]=now;
}
void ins(int x,int y,int z,int now){pre[++cnt]=y,nxt[cnt]=h[x];h[x]=cnt,v[cnt]=z;op[cnt]=now;}
void dijkstra()
{
memset(dis,63,sizeof dis);
q.push((oo){1,dis[1]=0});
while(!q.empty())
{
int x=q.top().id;q.pop();
if(vis[x])continue;vis[x]=1;
for(int i=h[x];i;i=nxt[i])
if(dis[pre[i]]>dis[x]+v[i])dis[pre[i]]=dis[x]+v[i],q.push((oo){pre[i],dis[pre[i]]});
}
}
bool cmp(vector<int>a,vector<int>b){return a.size()>b.size();}
void topsort()
{
queue<int>q;
for(int i=1;i<=n;i++)if(!in[i])q.push(i);
while(!q.empty())
{
int x=q.front();q.pop();
for(int i=h[x];i;i=nxt[i])
{
used[op[i]]=0,sum--;if(sum<=k)return ;
if(!(--in[pre[i]]))q.push(pre[i]);
}
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(rg int i=1;i<=m;i++)scanf("%d%d%d",&x[i],&y[i],&z[i]),add(x[i],y[i],z[i],i);
dijkstra();
for(int i=1;i<=n;i++)
for(int j=h[i];j;j=nxt[j])
if(dis[pre[j]]==dis[i]+v[j])used[op[j]]=i;
memset(h,0,sizeof h),cnt=0;
for(int i=1;i<=m;i++)
if(used[i])
{
sum++;
if(used[i]==x[i])s[y[i]].push_back(i),in[y[i]]++,out[x[i]]++;
else s[x[i]].push_back(i),in[x[i]]++,out[y[i]]++;
}
if(sum<=k)
{
printf("%d\n",sum);
for(int i=1;i<=m;i++)if(used[i])printf("%d ",i);
return 0;
}
int now=1;
while(now<=n)
{
if(s[now].size()>1)
{
int w=s[now].size(),t;
if(w-1>=sum-k)t=sum-k;
else t=w-1;sum-=t;
for(int i=0;i<t;i++)used[s[now][i]]=0;
if(sum<=k)break;
}
if(sum<=k)break;
now++;
}
if(sum<=k)
{
printf("%d\n",sum);
for(int i=1;i<=m;i++)if(used[i])printf("%d ",i);
return 0;
}
memset(in,0,sizeof in),sum=cnt=0,memset(h,0,sizeof h);
for(int i=1;i<=m;i++)
if(used[i])
{
sum++;
if(used[i]==x[i])ins(y[i],x[i],z[i],i),in[x[i]]++;
else ins(x[i],y[i],z[i],i),in[y[i]]++;
}
topsort();
printf("%d\n",sum);
for(int i=1;i<=m;i++)if(used[i])printf("%d ",i);
}

CF1076D Edge Deletion的更多相关文章

  1. CF1076D Edge Deletion 最短路径树+bfs

    题目描述 You are given an undirected connected weighted graph consisting of n n n vertices and m m m edg ...

  2. CF1076D Edge Deletion 最短路树

    问题描述 Codeforces 洛谷(有翻译) 题解 最短路树,是一棵在最短路过程中构建的树. 在\(\mathrm{Dijkstra}\)过程中,如果最终点\(y\)是由点\(x\)转移得到的,则在 ...

  3. Codeforces 1076D Edge Deletion(最短路树)

    题目链接:Edge Deletion 题意:给定一张n个顶点,m条边的带权无向图,已知从顶点1到各个顶点的最短路径为di,现要求保留最多k条边,使得从顶点1到各个顶点的最短距离为di的顶点最多.输出m ...

  4. 【CF1076D】Edge Deletion 最短路+贪心

    题目大意:给定 N 个点 M 条边的无向简单联通图,留下最多 K 条边,求剩下的点里面从 1 号顶点到其余各点最短路大小等于原先最短路大小的点最多怎么构造. 题解:我们可以在第一次跑 dij 时直接采 ...

  5. Educational Codeforces Round 54 (Rated for Div. 2) D:Edge Deletion

    题目链接:http://codeforces.com/contest/1076/problem/D 题意:给一个n个点,m条边的无向图.要求保留最多k条边,使得其他点到1点的最短路剩余最多. 思路:当 ...

  6. Codeforces1076D. Edge Deletion(最短路树+bfs)

    题目链接:http://codeforces.com/contest/1076/problem/D 题目大意: 一个图N个点M条双向边.设各点到点1的距离为di,保证满足条件删除M-K条边之后使得到点 ...

  7. Codeforces 1076D Edge Deletion 【最短路+贪心】

    <题目链接> 题目大意: n个点,m条边的无向图,现在需要删除一些边,使得剩下的边数不能超过K条.1点为起点,如果1到 i 点的最短距离与删除边之前的最短距离相同,则称 i 为 " ...

  8. 1076D Edge Deletion 【最短路】

    题目:戳这里 题意:求出1到所有点的最短路径后,把边减到小于等于k条,问保留哪些边可以使仍存在的最短路径最多. 解题思路:这题就是考求最短路的原理.比如dijkstra,用优先队列优化后存在队列中的前 ...

  9. Edge Deletion CodeForces - 1076D(水最短路)

    题意: 设从1到每个点的最短距离为d,求删除几条边后仍然使1到每个点的距离为d,使得剩下的边最多为k 解析: 先求来一遍spfa,然后bfs遍历每条路,如果d[v] == d[u] + Node[i] ...

随机推荐

  1. mybatis入门小结(六)

    入门小结---查询 1.1.1.1.1 #{}和${} #{}表示一个占位符号,通过#{}可以实现preparedStatement向占位符中设置值,自动进行java类型和jdbc类型转换,#{}可以 ...

  2. STM32 ~ JTAG、SWD和串口下载的问题

    最近有一个项目用到STM32,为了使PCB布线方便一些所以改了一些引脚,占用了JTAG接口的PA15和PB3,所以要禁用一下JTAG,下载采用SWD模式.这样在实际操作中做出一些总结(方法网上都有.这 ...

  3. Spring 4.2框架中注释驱动的事件监听器详解

    事件交互已经成为很多应用程序不可或缺的一部分,spring框架提供了一个完整的基础设施来处理瞬时事件.下面我们来看看Spring 4.2框架中基于注释驱动的事件监听器. 1.早期的方式 在早期,组件要 ...

  4. DNS常见攻击与防范

    DNS常见攻击与防范 转自:http://www.williamlong.info/archives/3813.html 日期:2015-7-10 随着网络的逐步普及,网络安全已成为INTERNET路 ...

  5. [haoi2015]T1

    题意:给定你一颗树,要求你在这棵树中确定K个黑点和N-K个白点,使黑点间与白点间两两距离之和最大,输出最大值.n<=2000 对于这道题,我想了好几个思路,包括点分治,贪心,动规,网络流等等,实 ...

  6. mysql的navicat注册码生成

    首先下载安装Navicat在Navicat关闭的情况下运行注册机在注册机界面点击patch,选择Navicat安装目录下的Navicat.exe打补丁弹出破解成功后拔掉网线断网products选择my ...

  7. Android View中滚动相关

    方法   scrollTo: (内容的左上角)达到某个地点 scrollBy: 根据当前位置,再移动多少 属性:   mScrollX, 以下是文档解释   The offset, in pixels ...

  8. C3P0 配置

    C3P0是一个开源的JDBC连接池. 在Spring中,C3P0的一些配置,介绍如下(只列了一部分,不是全部) <!-- c3p0连接池配置 --> <bean id="d ...

  9. plsql导入cvs 时提示missing right parenthesis

    删除自动生成的时间格式值,如:SQL function框里自动生成的值

  10. 【C/C++】产生随机数

    #include<iostream> #include<Ctime> #include<Cstdlib> using namespace std; //产生n个st ...