P3209 [HNOI2010]平面图判定

哈密尔顿环之外的任意一条边,要么连在环内部,要么连在环外部

判断两条边在同一部分会相交,则这两条边必须分开

那么把边看作点连边,跑二分图染色就行

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
typedef long long LL;
const LL maxn=500000;
inline LL read(){
LL x=0,f=1; char c=getchar();
while(c<'0'||c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0'&&c<='9'){
x=x*10+c-'0'; c=getchar();
}return x*f;
}
struct node{
LL to,next;
}dis[maxn];
LL T,num,n,m;
LL head[maxn],belong[maxn],edge[maxn][2],a[maxn];
bool f;
inline void Add(LL u,LL v){
dis[++num]=(node){v,head[u]}; head[u]=num;
}
inline bool Check(LL u1,LL v1,LL u2,LL v2){
return (u1<u2&&u2<v1&&v1<v2)||(u2<u1&&u1<v2&&v2<v1);
}
bool Dfs(LL u,LL c){
belong[u]=c;
for(LL i=head[u];i;i=dis[i].next){
LL v=dis[i].to;
if(belong[v]==c)
return false;
if(!belong[v]&&!Dfs(v,3-c))
return false;
}
return true;
}
int main(){
T=read();
while(T--){
n=read(),m=read();
for(LL i=1;i<=m;++i)
edge[i][0]=read(),
edge[i][1]=read();
for(LL i=1;i<=n;++i)
a[read()]=i;
if(m>3*n-6){
printf("NO\n");
continue;
}
memset(head,0,sizeof(head)); num=0;
for(LL i=1;i<=m;++i)
for(LL j=i+1;j<=m;++j){
LL u1=a[edge[i][0]],v1=a[edge[i][1]];
LL u2=a[edge[j][0]],v2=a[edge[j][1]];
if(u1>v1)
swap(u1,v1);
if(u2>v2)
swap(u2,v2);
if(Check(u1,v1,u2,v2)){
Add(i,j);
Add(j,i);
}
}
f=false;
memset(belong,0,sizeof(belong));
for(LL i=1;i<=m;++i)
if(!belong[i])
if(!Dfs(i,1)){
f=true;
break;
}
if(f)
printf("NO\n");
else
printf("YES\n");
}
return 0;
}

  

P3209 [HNOI2010]平面图判定的更多相关文章

  1. Luogu P3209 [HNOI2010]平面图判定(2-SAT)

    P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...

  2. 洛谷 P3209 [HNOI2010] 平面图判定

    链接: P3209 题意: 给出 \(T\) 张无向图 \((T\leq100)\),并给出它对应的哈密顿回路,判断每张图是否是平面图. 分析: 平面图判定问题貌似是有线性做法的,这里给出链接,不是本 ...

  3. 洛谷P3209 [HNOI2010]平面图判定(2-SAT)

    传送门 看到哈密顿回路就被吓傻了……结果没有好好考虑性质…… 首先,平面图有个性质:边数小于等于$3n-6$(我也不知道为啥),边数大于这个的直接pass 然后考虑原图,先把哈密顿回路单独摘出来,就是 ...

  4. bzoj1997 [HNOI2010]平面图判定Plana

    bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...

  5. [BZOJ1997][HNOI2010] 平面图判定

    Description Input Output     是的..BZOJ样例都没给.     题解(from 出题人): 如果只考虑简单的平面图判定,这个问题是非常不好做的. 但是题目中有一个条件— ...

  6. [HNOI2010]平面图判定

    Description: 若能将无向图 \(G=(V, E)\) 画在平面上使得任意两条无重合顶点的边不相交,则称 \(G\) 是平面图.判定一个图是否为平面图的问题是图论中的一个重要问题.现在假设你 ...

  7. Luogu3209 HNOI2010 平面图判定 平面图、并查集

    传送门 题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其 ...

  8. [HNOI2010] 平面图判定 planar

    标签:二分图判定.题解: 首先可以把题目中给你的那个环给画出来,这样就可以发现对于任意一个图来说,如果两条边要相交,就不能让他们相交,那么这两条边就要一条在里面一条在外面,如果把环画成一条链,那么就是 ...

  9. BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)

    题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...

随机推荐

  1. VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图)

    VS2010 MFC中制作Visual Studio风格的停靠侧栏窗口(CDockablePane里嵌套FormView表单视图) 1. 在资源窗口里新建一个FormView的Dialog,修改ID为 ...

  2. 每天一个 Linux 命令(57):ss命令

    ss是Socket Statistics的缩写.顾名思义,ss命令可以用来获取socket统计信息,它可以显示和netstat类似的内容.但ss的优势在于它能够显示更多更详细的有关TCP和连接状态的信 ...

  3. [转载]使用RoboCopy 命令

    经常进行文件管理操作的朋友们,不满意于Windows系统内置的复制功能,因为它太龟速了.于是大家就使用FastCopy.TeraCopy之类的软件来加速复制,但是你是否知道Windows 7已经内置快 ...

  4. $ is not defined

    $ is not defined 引入Jquery的顺序不正确,要把它放在第一个引入

  5. google PLDA + 实现原理及源代码分析

    LDA背景 LDA(隐含狄利克雷分布)是一个主题聚类模型,是当前主题聚类领域最火.最有力的模型之中的一个,它能通过多轮迭代把特征向量集合按主题分类. 眼下,广泛运用在文本主题聚类中. LDA的开源实现 ...

  6. leetcode第一刷_Word Search

    这道题之前一直没敢做,没想到前天用递归一遍过了. . 当时为什么想着用递归,而不是dp呢.由于我想到达某个位置的情况有非常多,即使从当前位置開始的搜索是已知的,但之前的状态是如何的也无从得知啊,实话实 ...

  7. Python Random随机数

    Python产生随机数的功能在random模块中实现.实现了各种分布的伪随机数生成器 该模块能够生成0到1的浮点随机数,也能够在一个序列中进行随机选择.产生的随机数能够是均匀分布.高斯分布,对数正态分 ...

  8. hdu1198Farm Irrigation(dfs找联通)

    题目链接: 啊哈哈,选我选我 思路是:首先依据图像抽象出联通关系.. 首先确定每一种图形的联通关系.用01值表示不连通与不连通... 然后从第1个图形进行dfs搜索.假设碰到两快田地能够联通的话那么标 ...

  9. 【BIEE】数据透视表格第一列添加序号

    现在有这么一个需求,需要在数据透视图的表格前面条件一列序号,作为行号,如下图: 那么实现这个如何实现呢? 只需要在BIEE分析编辑界面,新建一列,然后公式定义为:RCOUNT(RSUM(1)) ,保存 ...

  10. java中url正则regex匹配

    String regex = "^(?:https?://)?[\\w]{1,}(?:\\.?[\\w]{1,})+[\\w-_/?&=#%:]*$"; 解释说明: ^ : ...