难度:☆☆

/*显然可以前缀和*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 100007 using namespace std;
int n,m,ans,cnt;
int a[N],sum[N];char s[N]; int main()
{
freopen("reverse.in","r",stdin);
freopen("reverse.out","w",stdout);
scanf("%s",s);n=strlen(s);ans=N+N;
if(n==)
{
printf("0\n");
return ;
}
for(int i=;i<n;i++) a[i+]=s[i]==''?:;
for(int i=;i<=n;i++) sum[i]=sum[i-]+a[i];
for(int i=;i<=n;i++)
{
ans=min(ans,sum[i]+n-i-(sum[n]-sum[i]));
}
printf("%d\n",ans);
return ;
}

/*
枚举,用vis一个二进制数组表示当前数每一位的状态,出现或者不出现。
然后把二进制转为十进制,cnt[十进制]+1。
最后因为要求多少对,所以答案累加C(i,2)。
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define size 1024 using namespace std;
int n,cnt[size],vis[];
int Use[]={,,,,,,,,,};
long long ans; int main()
{
freopen("number.in","r",stdin);
freopen("number.out","w",stdout);
cin>>n;
int start,End;
for(int i=;i<=n;i++)
{
start=i;End=;memset(vis,,sizeof vis);
while(start) vis[start%]=,start/=;
for(int j=;j<=;j++) if(vis[j]) End+=Use[j];
cnt[End]++;
}
for(int i=;i<size;i++) ans+=1ll*cnt[i]*(cnt[i]-)/;
cout<<ans<<endl;
fclose(stdin);fclose(stdout);
return ;
}

/*
做法类似最长上升子序列
线段树可以优化到70,不会写没治...
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib> #define N 10000007 using namespace std;
int dp[N],a[N],cnt[N];
int n,k,ans; int main()
{
freopen("wave14.in","r",stdin);
freopen("wave.out","w",stdout);
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++) scanf("%d",&a[i]);
for(int i=;i<=n;i++) dp[i]=cnt[i]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=i;j++)
{
if(abs(a[j]-a[i])>=k)
{
if(cnt[j]%== && a[i]<a[j])
{
if(dp[i]<dp[j]+) dp[i]=dp[j]+,cnt[i]=cnt[j]+;
}
else if(cnt[j]%!= && a[i]>=a[j])
{
if(dp[i]<dp[j]+) dp[i]=dp[j]+,cnt[i]=cnt[j]+;
}
else dp[i]=max(dp[i],dp[j]);
}
}
}
printf("%d\n",dp[n]);
fclose(stdin);fclose(stdout);
return ;
}

30分暴力dp

/*
很神奇。
贪心,在满足k的限制下,偶数项尽量大,奇数项尽量小。
*/
#include<iostream>
#include<cstdio>
#include<cstring> #define N 2000007 using namespace std;
int a[N];
int n,k,m,ans,cur; inline int read()
{
int x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int main()
{
n=read();k=read();
for(int i=;i<n;i++) a[i]=read();
ans=,m=,cur=a[];
for(int i=;i<n;i++)
{
if(m)
if(cur-a[i]>=k)
m=,ans++,cur=a[i];
else cur=max(cur,a[i]); else
if(a[i]-cur>=k)
m=,ans++,cur=a[i];
else cur=min(cur,a[i]);
}
printf("%d\n",ans);
return ;
}

湖南集训day2的更多相关文章

  1. 主席树 || 可持久化线段树 || BZOJ 3653: 谈笑风生 || Luogu P3899 [湖南集训]谈笑风生

    题面:P3899 [湖南集训]谈笑风生 题解: 我很喜欢这道题. 因为A是给定的,所以实质是求二元组的个数.我们以A(即给定的P)作为基点寻找答案,那么情况分两类.一种是B为A的父亲,另一种是A为B的 ...

  2. P3900 [湖南集训]图样图森破

    P3900 [湖南集训]图样图森破 链接 分析: 感觉像个暴力. 可以枚举回文串的回文中心,即枚举一个串,枚举一个串的位置作为回文中心,然后求出这个串内的回文串的长度. 此时如果回文串两端都没有到这个 ...

  3. WC集训DAY2笔记 组合计数 part.1

    目录 WC集训DAY2笔记 组合计数 part.1 基础知识 组合恒等式 错排数 卡特兰数 斯特林数 伯努利数 贝尔数 调和级数 后记 补完了几天前写的东西 WC集训DAY2笔记 组合计数 part. ...

  4. 2019暑期金华集训 Day2 线性代数

    自闭集训 Day2 线性代数 高斯消元 做实数时,需要找绝对值最大的作为主元,以获取更高精度. 在欧几里得环(简单例子是模合数)意义下也是对的.比如模合数意义下可以使用辗转相除法消元. 欧几里得环:对 ...

  5. 暑假集训Day2 互不侵犯(状压dp)

    这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...

  6. 2022寒假集训day2

    day1:学习seach和回溯,初步了解. day2:深度优化搜索 T1 洛谷P157:https://www.luogu.com.cn/problem/P1157 题目描述 排列与组合是常用的数学方 ...

  7. 考前停课集训 Day2 非

    因为太长了 所以一天一天分开发 Day2 昨天晚上没开黑车 没脱衣服就睡了 可能是我难受了…… 新的一天. 早上好. 我没去晨跑,早上先和团长集合了,没看见rkbudlo来 于是就先吃饭了 去机房的时 ...

  8. 长沙雅礼中学集训-------------------day2

    怎么说呢,今天的题特别的神奇,因为emmmmmm,T1看不懂(一直到现在还没有理解明白期望概率什么的),T2题面看不懂+扩展欧几里得求逆元怎么求我忘了,T3哇,终于看懂一题了,然而写了个50分的程序但 ...

  9. 集训Day2

    雅礼集训2017Day2 T1 给你一个水箱,水箱里有n-1个挡板,水遵循物理定律 给你m个条件,表示第i个格子上面y+1高度的地方有或没有水 现在给你无限的水从任意地方往下倒,问最多满足多少条件 n ...

随机推荐

  1. ccf 201712-3 Crontab(Python实现)

    一.原题 问题描述 试题编号: 201712-3 试题名称: Crontab 时间限制: 10.0s 内存限制: 256.0MB 问题描述: 样例输入 3 201711170032 201711222 ...

  2. go语言结构体作为函数参数,采用的是值传递

    经过验证,go语言结构体作为函数参数,采用的是值传递.所以对于大型结构体传参,考虑到值传递的性能损耗,最好能采用指针传递. 验证代码: package main import ( "fmt& ...

  3. hdu 6301

    Distinct Values Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  4. MiniProfiler监控调试MVC5以及EntityFramework6性能

    想要通过在MVC中view中直观的查看页面加载以及后台EF执行情况,可以通过MiniProfiler小工具来实现. 但是从网上搜索的相关信息要么是MVC4下的老版本的MiniProfiler,要么就是 ...

  5. P3388 【模板】割点(割顶)

    P3388 [模板]割点(割顶) 题目背景 割点 题目描述 给出一个n个点,m条边的无向图,求图的割点. 输入输出格式 输入格式: 第一行输入n,m 下面m行每行输入x,y表示x到y有一条边 输出格式 ...

  6. 如何从Maven中央存储库下载?

    根据 Apache Maven说明: 下载时由项目的 pom.xml 文件的依赖来决定,目前不在本地存储库触发(当中央存储库包含了一个更新).默认情况下,Maven将从中央存储库下载. 在Maven中 ...

  7. CM10 WIFI连不上解决方案

    手机是Moto Mileston2 ,好久之前就刷成了CM10, 但是一直没出问题. 最近,发现在某些路由器上连接不上,总是 在验证账户或者获取IP. 解决办法如下: http://moto.zol. ...

  8. Django底层原理简介与安装

    Django环境目录搭建一栏: 利用wsgiref模块封装好的socket搭建服务端: #利用wsgiref模块封装好的socket演示操作(例如accept\recv) #也可以实现socket服务 ...

  9. rsa Round #71 (Div. 2 only)

    Replace A Time limit: 1000 msMemory limit: 256 MB   You are given a string SS containing only letter ...

  10. 紫书第三章训练1 E - DNA Consensus String

    DNA (Deoxyribonucleic Acid) is the molecule which contains the genetic instructions. It consists of ...