赶脚官方题解写得挺清楚的说,=_=

注意数据范围用long long,否则会溢出。

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <vector>
using namespace std; const int maxn = + ; int n;
vector<int> G[maxn], C[maxn]; inline int lucky(int x)
{
while(x)
{
if(x % != && x % != ) return ;
x /= ;
}
return ;
} long long d[maxn], sz[maxn], f[maxn]; void dfs(int u, int fa)
{
sz[u] = ;
f[u] = ;
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
if(C[u][i]) f[u] += sz[v];
else f[u] += f[v];
}
} void dfs2(int u, int fa)
{
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
if(C[u][i]) d[v] = sz[] - sz[v];
else d[v] = d[u] + f[u] - f[v];
dfs2(v, u);
}
} int main()
{
//freopen("in.txt", "r", stdin); scanf("%d", &n);
for(int i = ; i < n; i++)
{
int u, v, d; scanf("%d%d%d", &u, &v, &d);
int t = lucky(d);
G[u].push_back(v); C[u].push_back(t);
G[v].push_back(u); C[v].push_back(t);
} dfs(, );
dfs2(, ); long long ans = ;
for(int i = ; i <= n; i++) ans += f[i] * (f[i] - ) + d[i] * (d[i] - ) + * f[i] * d[i];
printf("%I64d\n", ans); return ;
}

代码君

CodeForces 109C 树形DP Lucky Tree的更多相关文章

  1. CodeForces 219D 树形DP

    D. Choosing Capital for Treeland time limit per test 3 seconds memory limit per test 256 megabytes i ...

  2. Codeforces 1153D 树形DP

    题意:有一个游戏,规则如下:每个点有一个标号,为max或min, max是指这个点的值是所有子节点中值最大的那一个,min同理.问如何给这颗树的叶子节点赋值,可以让这棵树的根节点值最大. 思路:很明显 ...

  3. Codeforces 1088E 树形dp+思维

    比赛的时候看到题意没多想就放弃了.结果最后D也没做出来,还掉分了,所以还是题目做的太少,人太菜. 回到正题: 题意:一棵树,点带权值,然后求k个子连通块,使得k个连通块内所有的点权值相加作为分子除以k ...

  4. Codeforces 1179D 树形DP 斜率优化

    题意:给你一颗树,你可以在树上添加一条边,问添加一条边之后的简单路径最多有多少条?简单路径是指路径中的点只没有重复. 思路:添加一条边之后,树变成了基环树.容易发现,以基环上的点为根的子树的点中的简单 ...

  5. CodeForces - 337D 树形dp

    题意:一颗树上有且仅有一只恶魔,恶魔会污染距离它小于等于d的点,现在已经知道被污染的m个点,问恶魔在的可能结点的数量. 容易想到,要是一个点到(距离最远的两个点)的距离都小于等于d,那么这个点就有可能 ...

  6. Up and Down the Tree CodeForces - 1065F (树形dp)

    链接 题目大意:给定$n$结点树, 假设当前在结点$v$, 有两种操作 $(1)$移动到$v$的子树内任意一个叶子上 $(2)$若$v$为叶子, 可以移动到距离$v$不超过$k$的祖先上 初始在结点$ ...

  7. Tree Cutting (Hard Version) CodeForces - 1118F2 (树形DP,计数)

    大意:给定树, 每个点有颜色, 一个合法的边集要满足删除这些边后, 每个连通块内颜色仅有一种, 求所有合法边集的个数 $f[x][0/1]$表示子树$x$中是否还有与$x$连通的颜色 对于每种颜色已经 ...

  8. codeforces 337D 树形DP Book of Evil

    原题直通车:codeforces 337D Book of Evil 题意:一棵n个结点的树上可能存在一个Evil,Evil危险范围为d,即当某个点与它的距离x<=d时,那么x是危险的. 现已知 ...

  9. codeforces 1053D 树形DP

    题意:给一颗树,1为根节点,有两种节点,min或者max,min节点的值是它的子节点的值中最小的,max节点的值是它的子节点的值中最大的,若共有k个叶子,叶子的值依次为1~k. 问给每个叶子的值赋为几 ...

随机推荐

  1. java学习笔记(3)——对象与类(日期)

    变量.类型.赋值.运算符等等: https://blog.csdn.net/common77zwq/article/details/81988676 1.概念: 面向对象程序设计OOP.类class. ...

  2. 使用 xib 设置 button 等款等高

    很多时候需要使用平分的控件来布局,当然xib中可以之间使用 UIToolBar 使用 UIBarButtonItem 添加弹簧即可完成平均分布 但是,直接使用 button 也可以实现平均布局

  3. JAVA常量介绍

    常量: 在程序执行过程中,其值不发生改变的量: 1.分类:     字面值常量和自定义常量: 1.字面值常量有以下几种: 字符串常量.小数常量.整数常量.字符常量.布尔常量(true.false).空 ...

  4. ArrayList 练习题

    1点名器 import java.util.ArrayList; import java.util.Random; import java.util.Scanner; class CallName3 ...

  5. Redis集群批量操作

    Redis在3.0版正式引入了集群这个特性,扩展变得非常简单.然而当你开心的升级到3.0后,却发现有些很好用的功能现在工作不了了, 比如我们今天要聊的pipeline功能等批量操作. Redis集群是 ...

  6. [20190618]日常学习记录(二)-flex属性及vue实战

    早上在看flex属性,总结一下它的优缺点 为什么使用flex, 她和浮动相比,代码更少.浮动要考虑左浮动右浮动,有时还要去清除浮动.flex一行代码就搞定了. 她更灵活,实现平均分配,根据内容大小分配 ...

  7. SQL查找TCar表中同一辆车前后两条记录的CarId,两条记录中有多个字段值一样

    查询同一个表中某一字段值相同的记录 select * from 表名 where 字段 in(select 字段 from 表名 group by 字段 having count(1)>1) s ...

  8. specrate 与specspeed 的区别

    What is the difference between a "rate" and a "speed" metric?There are several d ...

  9. redis-----字符串操作的复杂度

    命令 含义 复杂度 set key value 设置key-value o(1) get key 获取key-value o(1) del key 删除key-value o(1) setnx set ...

  10. 【虚拟机-部署】通过 Powershell 来调整 ARM 模式下虚拟机的尺寸

    需求描述 在部署完 ARM 模式的虚拟机以后,可以通过 PowerShell 命令来调整虚拟机的尺寸,以下是通过 PowerShell 命令来调整 ARM 模式的虚拟机尺寸. Note 本文只限于 A ...