这里的网络架构和论文中插图中的网络架构是相一致的。
对了,忘了说了,这里使用的keras版本是1.2.2,等源码读完之后,我自己改一个2.0.6版本上传到github上面。
可别直接粘贴复制,里面有些中文的解释,不一定可行的。
#defint input shape
input_shape = (300,300,3)
#defint the number of classes
num_classes = 21

#Here the network is wrapped in to a dictory because it more easy to make some operations.
net = {}
# Block 1
input_tensor = Input(shape=input_shape)
#defint the image hight and wight
img_size = (input_shape[1], input_shape[0])
net['input'] = input_tensor
net['conv1_1'] = Convolution2D(64, 3, 3,
activation='relu',
border_mode='same',
name='conv1_1')(net['input'])
net['conv1_2'] = Convolution2D(64, 3, 3,
activation='relu',
border_mode='same',
name='conv1_2')(net['conv1_1'])
net['pool1'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool1')(net['conv1_2'])
# Block 2
net['conv2_1'] = Convolution2D(128, 3, 3,
activation='relu',
border_mode='same',
name='conv2_1')(net['pool1'])
net['conv2_2'] = Convolution2D(128, 3, 3,
activation='relu',
border_mode='same',
name='conv2_2')(net['conv2_1'])
net['pool2'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool2')(net['conv2_2'])
# Block 3
net['conv3_1'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_1')(net['pool2'])
net['conv3_2'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_2')(net['conv3_1'])
net['conv3_3'] = Convolution2D(256, 3, 3,
activation='relu',
border_mode='same',
name='conv3_3')(net['conv3_2'])
net['pool3'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool3')(net['conv3_3'])
# Block 4
net['conv4_1'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_1')(net['pool3'])
net['conv4_2'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_2')(net['conv4_1'])
#the first layer be operated
net['conv4_3'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv4_3')(net['conv4_2'])
net['pool4'] = MaxPooling2D((2, 2), strides=(2, 2), border_mode='same',
name='pool4')(net['conv4_3'])
# Block 5
net['conv5_1'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_1')(net['pool4'])
net['conv5_2'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_2')(net['conv5_1'])
net['conv5_3'] = Convolution2D(512, 3, 3,
activation='relu',
border_mode='same',
name='conv5_3')(net['conv5_2'])
net['pool5'] = MaxPooling2D((3, 3), strides=(1, 1), border_mode='same',
name='pool5')(net['conv5_3'])
#here is the FC6 in the orginal VGG16 Network,There move to Atrous Convolution for the reason i don't know.
# FC6
net['fc6'] = AtrousConvolution2D(1024, 3, 3, atrous_rate=(6, 6),
activation='relu', border_mode='same',
name='fc6')(net['pool5'])
#the second layer to be operated
# FC7
net['fc7'] = Convolution2D(1024, 1, 1, activation='relu',
border_mode='same', name='fc7')(net['fc6'])
# x = Dropout(0.5, name='drop7')(x)
# Block 6
net['conv6_1'] = Convolution2D(256, 1, 1, activation='relu',
border_mode='same',
name='conv6_1')(net['fc7'])
#the third layer to be opreated
net['conv6_2'] = Convolution2D(512, 3, 3, subsample=(2, 2),
activation='relu', border_mode='same',
name='conv6_2')(net['conv6_1'])
# Block 7
net['conv7_1'] = Convolution2D(128, 1, 1, activation='relu',
border_mode='same',
name='conv7_1')(net['conv6_2'])
net['conv7_2'] = ZeroPadding2D()(net['conv7_1'])
#the forth layer to be operated
net['conv7_2'] = Convolution2D(256, 3, 3, subsample=(2, 2),
activation='relu', border_mode='valid',
name='conv7_2')(net['conv7_2'])
# Block 8
net['conv8_1'] = Convolution2D(128, 1, 1, activation='relu',
border_mode='same',
name='conv8_1')(net['conv7_2'])
#the fifth layer to be operated
net['conv8_2'] = Convolution2D(256, 3, 3, subsample=(2, 2),
activation='relu', border_mode='same',
name='conv8_2')(net['conv8_1'])
# the last layer to be operated
# Last Pool
net['pool6'] = GlobalAveragePooling2D(name='pool6')(net['conv8_2']) # Prediction from conv4_3
# net['conv4_3']._shape = (?, 38, 38, 512)
# 算了还是说中文吧,这个层是用来对输入数据进行正则化的层,有参数需要学习,输出的数据形式和输入输入形式是一致的。
net['conv4_3_norm'] = Normalize(20, name='conv4_3_norm')(net['conv4_3'])
num_priors = 3
#here is *4 because the box need 4 number to define,here is only predice the box coordinate
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv4_3_norm_mbox_loc')(net['conv4_3_norm'])
net['conv4_3_norm_mbox_loc'] = x
flatten = Flatten(name='conv4_3_norm_mbox_loc_flat')
net['conv4_3_norm_mbox_loc_flat'] = flatten(net['conv4_3_norm_mbox_loc'])
#the box coordinate is finished now it will perdice the classes
name = 'conv4_3_norm_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
# here is start predict the classes
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv4_3_norm'])
net['conv4_3_norm_mbox_conf'] = x
flatten = Flatten(name='conv4_3_norm_mbox_conf_flat')
net['conv4_3_norm_mbox_conf_flat'] = flatten(net['conv4_3_norm_mbox_conf'])
#这里是用来对conv4_3层的feature map生成论文中所说的default box,对没错,就是直接使用Feature map来进行default box的生成
#当然这里要指定一些参数,这些参数是需要好好斟酌的。
priorbox = PriorBox(img_size, 30.0, aspect_ratios=[2],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv4_3_norm_mbox_priorbox')
net['conv4_3_norm_mbox_priorbox'] = priorbox(net['conv4_3_norm'])
#好了,到这里第一个层的操作就完成了,下面其他层的操作都是相类似的啦。
# Prediction from fc7
num_priors = 6
net['fc7_mbox_loc'] = Convolution2D(num_priors * 4, 3, 3,
border_mode='same',
name='fc7_mbox_loc')(net['fc7'])
flatten = Flatten(name='fc7_mbox_loc_flat')
net['fc7_mbox_loc_flat'] = flatten(net['fc7_mbox_loc'])
name = 'fc7_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
net['fc7_mbox_conf'] = Convolution2D(num_priors * num_classes, 3, 3,
border_mode='same',
name=name)(net['fc7'])
flatten = Flatten(name='fc7_mbox_conf_flat')
net['fc7_mbox_conf_flat'] = flatten(net['fc7_mbox_conf'])
priorbox = PriorBox(img_size, 60.0, max_size=114.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='fc7_mbox_priorbox')
net['fc7_mbox_priorbox'] = priorbox(net['fc7'])
# Prediction from conv6_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv6_2_mbox_loc')(net['conv6_2'])
net['conv6_2_mbox_loc'] = x
flatten = Flatten(name='conv6_2_mbox_loc_flat')
net['conv6_2_mbox_loc_flat'] = flatten(net['conv6_2_mbox_loc'])
name = 'conv6_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv6_2'])
net['conv6_2_mbox_conf'] = x
flatten = Flatten(name='conv6_2_mbox_conf_flat')
net['conv6_2_mbox_conf_flat'] = flatten(net['conv6_2_mbox_conf'])
priorbox = PriorBox(img_size, 114.0, max_size=168.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv6_2_mbox_priorbox')
net['conv6_2_mbox_priorbox'] = priorbox(net['conv6_2'])
# Prediction from conv7_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv7_2_mbox_loc')(net['conv7_2'])
net['conv7_2_mbox_loc'] = x
flatten = Flatten(name='conv7_2_mbox_loc_flat')
net['conv7_2_mbox_loc_flat'] = flatten(net['conv7_2_mbox_loc'])
name = 'conv7_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv7_2'])
net['conv7_2_mbox_conf'] = x
flatten = Flatten(name='conv7_2_mbox_conf_flat')
net['conv7_2_mbox_conf_flat'] = flatten(net['conv7_2_mbox_conf'])
priorbox = PriorBox(img_size, 168.0, max_size=222.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv7_2_mbox_priorbox')
net['conv7_2_mbox_priorbox'] = priorbox(net['conv7_2'])
# Prediction from conv8_2
num_priors = 6
x = Convolution2D(num_priors * 4, 3, 3, border_mode='same',
name='conv8_2_mbox_loc')(net['conv8_2'])
net['conv8_2_mbox_loc'] = x
flatten = Flatten(name='conv8_2_mbox_loc_flat')
net['conv8_2_mbox_loc_flat'] = flatten(net['conv8_2_mbox_loc'])
name = 'conv8_2_mbox_conf'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Convolution2D(num_priors * num_classes, 3, 3, border_mode='same',
name=name)(net['conv8_2'])
net['conv8_2_mbox_conf'] = x
flatten = Flatten(name='conv8_2_mbox_conf_flat')
net['conv8_2_mbox_conf_flat'] = flatten(net['conv8_2_mbox_conf'])
priorbox = PriorBox(img_size, 222.0, max_size=276.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='conv8_2_mbox_priorbox')
net['conv8_2_mbox_priorbox'] = priorbox(net['conv8_2'])
# Prediction from pool6
num_priors = 6
x = Dense(num_priors * 4, name='pool6_mbox_loc_flat')(net['pool6'])
net['pool6_mbox_loc_flat'] = x
name = 'pool6_mbox_conf_flat'
if num_classes != 21:
name += '_{}'.format(num_classes)
x = Dense(num_priors * num_classes, name=name)(net['pool6'])
net['pool6_mbox_conf_flat'] = x
priorbox = PriorBox(img_size, 276.0, max_size=330.0, aspect_ratios=[2, 3],
variances=[0.1, 0.1, 0.2, 0.2],
name='pool6_mbox_priorbox')
#由于这里的维数不对,因此要修改Feature map层对应的维数信息
if K.image_dim_ordering() == 'tf':
target_shape = (1, 1, 256)
else:
target_shape = (256, 1, 1)
net['pool6_reshaped'] = Reshape(target_shape,
name='pool6_reshaped')(net['pool6'])
net['pool6_mbox_priorbox'] = priorbox(net['pool6_reshaped'])
#好啦,到这里位置,所有的信息都已经生成了,下一步就是根据这些信息来进行训练或者是预测了。
# Gather all predictions
net['mbox_loc'] = merge([net['conv4_3_norm_mbox_loc_flat'],
net['fc7_mbox_loc_flat'],
net['conv6_2_mbox_loc_flat'],
net['conv7_2_mbox_loc_flat'],
net['conv8_2_mbox_loc_flat'],
net['pool6_mbox_loc_flat']],
mode='concat', concat_axis=1, name='mbox_loc')
net['mbox_conf'] = merge([net['conv4_3_norm_mbox_conf_flat'],
net['fc7_mbox_conf_flat'],
net['conv6_2_mbox_conf_flat'],
net['conv7_2_mbox_conf_flat'],
net['conv8_2_mbox_conf_flat'],
net['pool6_mbox_conf_flat']],
mode='concat', concat_axis=1, name='mbox_conf')
net['mbox_priorbox'] = merge([net['conv4_3_norm_mbox_priorbox'],
net['fc7_mbox_priorbox'],
net['conv6_2_mbox_priorbox'],
net['conv7_2_mbox_priorbox'],
net['conv8_2_mbox_priorbox'],
net['pool6_mbox_priorbox']],
mode='concat', concat_axis=1,
name='mbox_priorbox')
if hasattr(net['mbox_loc'], '_keras_shape'):
num_boxes = net['mbox_loc']._keras_shape[-1] // 4
elif hasattr(net['mbox_loc'], 'int_shape'):
num_boxes = K.int_shape(net['mbox_loc'])[-1] // 4
net['mbox_loc'] = Reshape((num_boxes, 4),
name='mbox_loc_final')(net['mbox_loc'])
net['mbox_conf'] = Reshape((num_boxes, num_classes),
name='mbox_conf_logits')(net['mbox_conf'])
net['mbox_conf'] = Activation('softmax',
name='mbox_conf_final')(net['mbox_conf'])
net['predictions'] = merge([net['mbox_loc'],
net['mbox_conf'],
net['mbox_priorbox']],
mode='concat', concat_axis=2,
name='predictions')
model = Model(net['input'], net['predictions'])

SSD Network Architecture--keras version的更多相关文章

  1. Network architecture for minimalistic connected objects

    In one embodiment, a network architecture comprises minimalistic connected objects (MCOs), distribut ...

  2. 【Network Architecture】Densely Connected Convolutional Networks 论文解析

    目录 0. Paper link 1. Overview 2. DenseNet Architecture 2.1 Analogy to ResNet 2.2 Composite function 2 ...

  3. [Network Architecture]Mask R-CNN论文解析(转)

    前言 最近有一个idea需要去验证,比较忙,看完Mask R-CNN论文了,最近会去研究Mask R-CNN的代码,论文解析转载网上的两篇博客 技术挖掘者 remanented 文章1 论文题目:Ma ...

  4. 【Network Architecture】Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning(转)

    文章来源: https://www.cnblogs.com/shouhuxianjian/p/7786760.html Feature Extractor[Inception v4] 0. 背景 随着 ...

  5. [Network Architecture]Xception 论文笔记(转)

    文章来源 论文:Xception: Deep Learning with Depthwise Separable Convolutions 论文链接:https://arxiv.org/abs/161 ...

  6. 【Network Architecture】Feature Pyramid Networks for Object Detection(FPN)论文解析(转)

    目录 0. 前言 1. 博客一 2.. 博客二 0. 前言   这篇论文提出了一种新的特征融合方式来解决多尺度问题, 感觉挺有创新性的, 如果需要与其他网络进行拼接,还是需要再回到原文看一下细节.这里 ...

  7. [Python Debug]Kernel Crash While Running Neural Network with Keras|Jupyter Notebook运行Keras服务器宕机原因及解决方法

    最近做Machine Learning作业,要在Jupyter Notebook上用Keras搭建Neural Network.结果连最简单的一层神经网络都运行不了,更奇怪的是我先用iris数据集跑了 ...

  8. [Keras] Develop Neural Network With Keras Step-By-Step

    简单地训练一个四层全连接网络. Ref: http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/ 1 ...

  9. [Network Architecture]DPN(Dual Path Network)算法详解(转)

    https://blog.csdn.net/u014380165/article/details/75676216 论文:Dual Path Networks 论文链接:https://arxiv.o ...

随机推荐

  1. Android Service实现双向通信(一)

    首先,大概来总结一下与Service的通信方式有很多种: 通过BroadCastReceiver:这种方式是最简单的,只能用来交换简单的数据: 通过Messager:这种方式是通过一个传递一个Mess ...

  2. 【JVM】idea启动项目时候 添加jvm启动参数显示详细日志

    -verbose:class

  3. 【报错】spring整合activeMQ,pom.xml文件缺架包,启动报错:Caused by: java.lang.ClassNotFoundException: org.apache.xbean.spring.context.v2.XBeanNamespaceHandler

    spring版本:4.3.13 ActiveMq版本:5.15 ======================================================== spring整合act ...

  4. [UIDevice currentDevice]

    获取iphone的系统信息使用[UIDevice currentDevice],信息例如以下: [[UIDevice currentDevice] systemName]:系统名称,如iPhone O ...

  5. c#中开发ActiveX的学习笔记【转】

    http://www.cnblogs.com/yjmyzz/archive/2009/12/14/1623396.html 1.为什么要用ActiveX? 网页本身的功能是有限的,要想实现一些网页本身 ...

  6. innerHTML outerHTML innerText

      迁移时间--2017年10月31日14:52:59 Author:Marydon UpdateTime--2017年1月15日20:33:03innerHTML,outerHTML与innerTe ...

  7. windows下redis安装以及简单配置

    1.下载redis 下载地址https://github.com/dmajkic/redis/downloads.有32bit和64bit根据自己需要选择就可以了. 2.安装redis 首先使用cmd ...

  8. 转:学习linux驱动经典书籍

    Linux驱动学习的最大困惑在于书籍的缺乏,市面上最常见的书为<linux_device_driver 3rd Edition>,这是一本很经典的书,无奈Linux的东东还是过于庞大,这本 ...

  9. 使用 kexec 快速重启 Linux

    http://www.ibm.com/developerworks/cn/linux/l-kexec/ 简介: 即使您的工作不要求您每天多次重新启动您的 Linux 机器,等待系统启动也实在是一件枯燥 ...

  10. memcache及其telnet命令使用详解

    1.启动Memcache 常用参数memcached 1.4.3-p <num>      设置端口号(默认不设置为: 11211)-U <num>      UDP监听端口 ...