tflearn 数据集太大无法加载进内存问题?

Hi, all!
I'm trying to train deep net on a big dataset that doesn't fit into memory.
Is there any way to use generators to read batches into memory on every training step?
I'm looking for behaviour similar to fit_generator method in Keras.

I know that in pure tensorflow following snippet can be wrapped by for loop to train on several batches:

batch_gen = generator(data)
batch = batch_gen.next() sess.run([optm, loss, ...], feed_dict = {X: batch[0], y: batch[1]})
 
 

Owner

aymericdamien commented on 11 Jan 2017

That is a good idea! While this get implemented, you can use image_preloader or hdf5 dataset to deal with that issue.

Image PreLoader

tflearn.data_utils.image_preloader (target_path, image_shape, mode='file', normalize=True, grayscale=False, categorical_labels=True, files_extension=None, filter_channel=False)

Create a python array (Preloader) that loads images on the fly (from disk or url). There is two ways to provide image samples 'folder' or 'file', see the specifications below.

'folder' mode: Load images from disk, given a root folder. This folder should be arranged as follow:

ROOT_FOLDER -> SUBFOLDER_0 (CLASS 0) -> CLASS0_IMG1.jpg -> CLASS0_IMG2.jpg -> ...-> SUBFOLDER_1 (CLASS 1) -> CLASS1_IMG1.jpg -> ...-> ...

Note that if sub-folders are not integers from 0 to n_classes, an id will be assigned to each sub-folder following alphabetical order.

'file' mode: A plain text file listing every image path and class id. This file should be formatted as follow:

/path/to/img1 class_id
/path/to/img2 class_id
/path/to/img3 class_id

Note that load images on the fly and convert is time inefficient, so you can instead use build_hdf5_image_dataset to build a HDF5 dataset that enable fast retrieval (this function takes similar arguments).

Examples

# Load path/class_id image file:
dataset_file = 'my_dataset.txt' # Build the preloader array, resize images to 128x128
from tflearn.data_utils import image_preloader
X, Y = image_preloader(dataset_file, image_shape=(128, 128), mode='file', categorical_labels=True, normalize=True) # Build neural network and train
network = ...
model = DNN(network, ...)
model.fit(X, Y)

Arguments

  • target_path: str. Path of root folder or images plain text file.
  • image_shape: tuple (height, width). The images shape. Images that doesn't match that shape will be resized.
  • mode: str in ['file', 'folder']. The data source mode. 'folder' accepts a root folder with each of his sub-folder representing a class containing the images to classify. 'file' accepts a single plain text file that contains every image path with their class id. Default: 'folder'.
  • categorical_labels: bool. If True, labels are converted to binary vectors.
  • normalize: bool. If True, normalize all pictures by dividing every image array by 255.
  • grayscale: bool. If true, images are converted to grayscale.
  • files_extension: list of str. A list of allowed image file extension, for example ['.jpg', '.jpeg', '.png']. If None, all files are allowed.
  • filter_channel: bool. If true, images which the channel is not 3 should be filter.

Returns

(X, Y): with X the images array and Y the labels array.

参考:https://github.com/tflearn/tflearn/issues/555

I try preloader, but seems have bugs. Code as below:
`from future import division, print_function, absolute_import

import tflearn

n = 5

train_dataset_file = '/home/lfwin/imagenet-data/raw-data/train_10c'
test_dataset_file = '/home/lfwin/imagenet-data/raw-data/validation_10c/'

from tflearn.data_utils import image_preloader
X, Y = image_preloader(train_dataset_file, image_shape=(299, 299, 3), mode='folder',
categorical_labels=True, normalize=True)

(testX, testY) = image_preloader(test_dataset_file, image_shape=(299, 299, 3), mode='folder',
categorical_labels=True, normalize=True)
net = tflearn.input_data(shape=[None, 299, 299, 3])
net = tflearn.conv_2d(net, 16, 3, regularizer='L2', weight_decay=0.0001)
net = tflearn.residual_block(net, n, 16)
net = tflearn.residual_block(net, 1, 32, downsample=True)
net = tflearn.residual_block(net, n-1, 32)
net = tflearn.residual_block(net, 1, 64, downsample=True)
net = tflearn.residual_block(net, n-1, 64, downsample=True)
net = tflearn.batch_normalization(net)
net = tflearn.activation(net, 'relu')
net = tflearn.global_avg_pool(net)

net = tflearn.fully_connected(net, 20, activation='softmax')
mom = tflearn.Momentum(0.1, lr_decay=0.1, decay_step=32000, staircase=True)
net = tflearn.regression(net, optimizer=mom,
loss='categorical_crossentropy')

model = tflearn.DNN(net, checkpoint_path='model_resnet_cifar10',
max_checkpoints=10, tensorboard_verbose=0,
clip_gradients=0.)

model.fit(X, Y, n_epoch=1, validation_set=(testX, testY),
snapshot_epoch=False, snapshot_step=500,
show_metric=True, batch_size=16, shuffle=True,
run_id='resnet_imagenet')
`
During debugging, following bugs appeared:
Momentum | epoch: 000 | loss: -717286.50000 - acc: -30021.9395 -- iter: 00032/26000
...

run_id=run_id)

File "/home/lfwin/hello/tflearn/tflearn/helpers/trainer.py", line 289, in fit
show_metric)
File "/home/lfwin/hello/tflearn/tflearn/helpers/trainer.py", line 706, in _train
feed_batch)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 372, in run
run_metadata_ptr)
File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 619, in _run
np_val = np.array(subfeed_val, dtype=subfeed_dtype)
ValueError: could not broadcast input array from shape (299,299,3) into shape (299,299)

1 epoch is 000 always, loss is Nan after 1st step.
2 broadcasting error from shape (299,299,3) into shape (299,299)

 

 

pankap

commented

on 15 Oct 2016

I thought posting this might help you somehow: I came
across the same ValueError: could not broadcast input array from shape
(x,x,3) into shape (x,x) when I tried to load the Caltech 101 images
using build_image_dataset_from_dir (specifically: arrs[i] =
np.array(arr) into the shuffle method). I identified the root cause to
be some 8bit Grayscale JPG files in the dataset. Having the files
converted from Grayscale to 24bit RGB, using an external util that I
wrote, solved the issue. I am not sure if in-memory conversion to RGB
using PIL will create the proper 3-byte JPEG format.

 

 

0fork

commented

on 24 May 2017

I ran into this also and solved this by using tflearn.reshape(net, new_shape=[-1, 300, 300, 1]) after input_data. My problem was that grayscale=True with image_preloader caused (300, 300) shape so conv_2d wasn't my friend anymore and I didn't find any way to use normal np.reshape with image_preloader instance. Now everything gets jammed nicely into the right shape.

tflearn 数据集太大无法加载进内存问题?——使用image_preloader 或者是 hdf5 dataset to deal with that issue的更多相关文章

  1. 以最省内存的方式把大图片加载到内存及获取Exif信息和获取屏幕高度和宽度的新方法

    我们在加载图片时经常会遇到内存溢出的问题,图片太大,我们加载图片时,一般都是用的如下一般方法(加载本地图片): /** * 不作处理,去加载图片的方法,碰到比较大的图片会内存溢出 */ private ...

  2. WPF 大数据加载过程中的等待效果——圆圈转动

    大家肯定遇到过或将要遇到加载大数据的时候,如果出现长时间的空白等待,一般人的概念会是:难道卡死了? 作为一个懂技术的挨踢技术,即使你明知道数据量太大正在加载,但是假如看不到任何动静,自己觉得还是一种很 ...

  3. asp.net中TreeView的大数据加载速度优化

    由于数据量太大,加载树时间很长,所以进行了优化 前台 .aspx <asp:Panel ID="Panel2" runat="server" Height ...

  4. 解决父类加载iframe,src参数过大导致加载失败

    原文:解决父类加载iframe,src参数过大导致加载失败 <iframe src="*******.do?param=****" id="leftFrame&qu ...

  5. [WP8.1UI控件编程]Windows Phone大数据量网络图片列表的异步加载和内存优化

    11.2.4 大数据量网络图片列表的异步加载和内存优化 虚拟化技术可以让Windows Phone上的大数据量列表不必担心会一次性加载所有的数据,保证了UI的流程性.对于虚拟化的技术,我们不仅仅只是依 ...

  6. [Aaronyang] 写给自己的WPF4.5 笔记6[三巴掌-大数据加载与WPF4.5 验证体系详解 2/3]

    我要做回自己--Aaronyang的博客(www.ayjs.net) 博客摘要: Virtualizing虚拟化DEMO 和 大数据加载的思路及相关知识 WPF数据提供者的使用ObjectDataPr ...

  7. 【ESXI6.0】 ESXI6.0安装时无法安装网卡驱动的解决方法及将网卡驱动加载进ISO

    http://blog.163.com/xifanliang@yeah/blog/static/115078488201571584321787/ 若安装时提示如下图所示 之后安装无法完成,会提示没有 ...

  8. Unity动态加载和内存管理(三合一)

    原址:http://game.ceeger.com/forum/read.php?tid=4394#info 最近一直在和这些内容纠缠,把心得和大家共享一下: Unity里有两种动态加载机制:一是Re ...

  9. [转]全面理解Unity加载和内存管理

    [转]全面理解Unity加载和内存管理 最近一直在和这些内容纠缠,把心得和大家共享一下: Unity里有两种动态加载机制:一是Resources.Load,一是通过AssetBundle,其实两者本质 ...

随机推荐

  1. Go -- FIFO类(缓存淘汰算法)(转)

    1 FIFO 1.1. 原理 按照“先进先出(First In,First Out)”的原理淘汰数据. 1.2. 实现 FIFO队列,具体实现如下: 1. 新访问的数据插入FIFO队列尾部,数据在FI ...

  2. asp .net 为图片添加文字水印(内包含有加图片水印的方法) .

    在项目中先创建一个Imag_writer 类库 在该类库下分别创建两个枚举类型WaterMarkType (水印的类型).WaterMarkPosition (水印的位置).代码如下: using S ...

  3. Linaro/Yocto/Openwrt

    http://en.wikipedia.org/wiki/Linaro Linaro From Wikipedia, the free encyclopedia     This article ap ...

  4. Logistic Regression 笔记与理解

    Logistic Regression 笔记与理解 Logistic Regression Hypothesis 记为 H(theta) H(theta)=g(z) 当中g(z),是一个叫做Logis ...

  5. IMDB-WIKI - 具有年龄和性别标签的500k +脸部图像

    Rasmus Rothe, Radu Timofte, Luc Van Gool DEX:从单一形象深刻地看待年龄 观看 人物研讨会国际计算机视觉大会(ICCV),2015*获胜LAP面对年龄估计的挑 ...

  6. canvas转盘抽奖的实现(二)

    本篇是<canvas转盘抽奖的实现(一)>的另一种实现方法,主要通过css3的transform以及transition过渡来实现.     // ' + r + '等奖'; } draw ...

  7. Linux内核RCU(Read Copy Update)锁简析

    在非常早曾经,大概是2009年的时候.写过一篇关于Linux RCU锁的文章<RCU锁在linux内核的演变>,如今我承认.那个时候我尽管懂了RCU锁,可是我没有能力用一种非常easy的描 ...

  8. Scrapy爬虫入门系列2 示例教程

    本来想爬下http://www.alexa.com/topsites/countries/CN 总排名的,但是收费了 只爬了50条数据: response.xpath('//div[@class=&q ...

  9. 自定义 spinner

    http://blog.sina.com.cn/s/blog_3e333c4a010151cj.html

  10. Cocos2d-x之LayerMultiplex的使用

    1.用处 用于管理Layer的切换,而不用切换场景. 2.代码 1).h文件 #include "cocos2d.h" #include "ui/CocosGUI.h&q ...