Codevs 1159 最大全0子矩阵 悬线法!!!!
1159 最大全0子矩阵
时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold
在一个0,1方阵中找出其中最大的全0子矩阵,所谓最大是指O的个数最多。
输入文件第一行为整数N,其中1<=N<=2000,为方阵的大小,紧接着N行每行均有N个0或1,相邻两数间严格用一个空格隔开。
输出文件仅一行包含一个整数表示要求的最大的全零子矩阵中零的个数。
5
0 1 0 1 0
0 0 0 0 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
9
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=;
int h[maxn][maxn],l[maxn][maxn],r[maxn][maxn];
int n,maxl,maxr,ans,martrix[maxn][maxn];
int main() {
scanf("%d",&n);
for(int i=;i<=n;++i)
for(int j=;j<=n;++j)
scanf("%d",&martrix[i][j]);
for(int i=;i<=n;++i)
r[][i]=n;
for(int i=;i<=n;++i) {
maxr=n;
maxl=;
for(int j=;j<=n;++j)
if(martrix[i][j]) {
maxl=j+;
h[i][j]=l[i][j]=;
}
else {
h[i][j]=h[i-][j]+;
l[i][j]=max(maxl,l[i-][j]);
}
for(int j=n;j>;--j)
if(martrix[i][j]) {
maxr=j-;
r[i][j]=n;
}
else {
r[i][j]=min(maxr,r[i-][j]);
ans=max(ans,(r[i][j]-l[i][j]+)*h[i][j]);
}
}
printf("%d\n",ans);
return ;
}
看到这个题目的时候妥妥的蒙蔽了~~,按照正方形敲出来就A了一个点,题解居然是悬线法!!!!(跑去学了悬线法)
就是记录一下能扩展到的最靠左、右、上的边界,搞一下就出来了。。。
悬线法
时间复杂度O(NM) 空间复杂度O(NM)
定义
有效竖线:除了两个端点外,不覆盖任何一个障碍点的竖直线段。
悬线:上端覆盖了一个障碍点或者到达整个矩形上边界的有效线段。
每个悬线都与它底部的点一一对应,矩形中的每一个点(矩形顶部的点除外)都对应了一个悬线。
悬线的个数=(N-1)*M;
如果把一个极大子矩形按照横坐标的不同切割成多个与y轴平行的线段,那么其中至少有一个悬线。
如果把一个悬线向左右两个方向尽可能的移动,那么就得到了一个矩形,我们称它为悬线对应的矩形。
悬线对应的矩形不一定是极大子矩形,因为下边界可能还可以向下扩展。
设计算法:
原理:所有悬线对应矩形的集合一定包含了极大子矩形的集合。
通过枚举所有的悬线,找出所有的极大子矩形。
算法规模:
悬线个数=(N-1)×M
极大子矩形个数≤悬线个数
具体方法:
设 H[i,j]为点(i,j)对应的悬线的长度。
L[i,j]为点(i,j)对应的悬线向左最多能够移动到的位置。
R[i,j]为点(i,j)对应的悬线向右最多能够移动到的位置。
!考虑点(i,j)对应的悬线与点(i-1,j)对应的悬线的关系(递推思想):
如果(i-1,j)为障碍点,那么,(i,j)对应的悬线长度1,左右能移动到的位置是整个矩形的左右边界。
即 H[i,j]=1,
L[i,j]=0,R[i,j]=m
如果(i-1,j)不是障碍点,那么,(i,j)对应的悬线长度为(i-1,j)对应的悬线长度+1。
即 H[i,j]=H[i-1,j]+1
•如果(i-1,j)不是障碍点,那么(i,j)对应的悬线左右能移动的位置要在(i-1,j)的基础上变化。
L[i-1,j]
L[i,j]=max
(i-1,j)左边第一个障碍点的位置
•同理,也可以得到R[i,j]的递推式
R[i-1,j]
R[i,j]=min
(i-1,j)右边第一个障碍点的位置
Codevs 1159 最大全0子矩阵 悬线法!!!!的更多相关文章
- [codevs1159]最大全0子矩阵(悬线法)
解题关键:悬线法模板题.注意此模板用到了滚动数组. #include<cstdio> #include<cstring> #include<algorithm> # ...
- Codevs 1159 最大全0子矩阵
1159 最大全0子矩阵 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 在一个0,1方阵中找出其中最大的全 ...
- CODE[VS] 1159 最大全0子矩阵
写一道CODEVS的题目 其实我还是很喜欢CODEVS的界面的 主要是系统地学习一下悬线法这个看似十分简单,实际就是十分简单的算法 对于一些详细的东西参考dalao's blog,不喜勿喷 对于悬线法 ...
- BZOJ 3039: 玉蟾宫( 悬线法 )
最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...
- [ZJOI2007]棋盘制作 悬线法dp 求限制下的最大子矩阵
https://www.luogu.org/problemnew/show/P1169 第一次听说到这种dp的名称叫做悬线法,听起来好厉害 题意是求一个矩阵内的最大01交错子矩阵,开始想的是dp[20 ...
- City Game UVALive - 3029(悬线法求最大子矩阵)
题意:多组数据(国外题好像都这样),每次n*m矩形,F表示空地,R表示障碍 求最大子矩阵(悬线法模板) 把每个格子向上延伸的空格看做一条悬线 以le[i][j],re[i][j],up[i][j]分别 ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- P4147 玉蟾宫(悬线法求最大子矩阵)
P4147 玉蟾宫 悬线法 ,\(l_{i,j},r_{i,j},up_{i,j}\) 分别表示 \((i,j)\) 这个点向左,右,上能到达的远点.然后面积就很好办了.具体实现见代码. 然而,还有更 ...
- 【BZOJ】3039: 玉蟾宫 悬线法
[题意]给定01矩阵,求最大全1子矩阵.n,m<=1000. [算法]动态规划(悬线法) [题解]★对于01矩阵中的任意一个全1极大子矩阵,都可以在其上边界遇到的障碍点处悬线到下边界的点x,则点 ...
随机推荐
- 第28题:leetcode101:Symmetric Tree对称的二叉树
给定一个二叉树,检查它是否是镜像对称的. 例如,二叉树 [1,2,2,3,4,4,3] 是对称的. 1 / \ 2 2 / \ / \ 3 4 4 3 但是下面这个 [1,2,2,null,3,nul ...
- http请求中客户端真实的ip
private String getRemoteAddr() { String ip = ""; String unknow = "unknown"; try ...
- 3- vue django restful framework 打造生鲜超市 - model设计和资源导入
3- vue django restful framework 打造生鲜超市 - model设计和资源导入 使用Python3.6与Django2.0.2(Django-rest-framework) ...
- web前端-回调函数sort详解
<!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...
- vmware 开机自动启动
vmware开机自动启动, 可以使用vmrun命令. 1. 首先在“我的电脑”-“属性”-“高级”-“环境变量”-“PATH”中添加vmware路径,如:C:\Program Files (x86)\ ...
- JZOJ 5184. 【NOIP2017提高组模拟6.29】Gift
5184. [NOIP2017提高组模拟6.29]Gift (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Detailed ...
- day23-python之日志 re模块
1.logging import logging #-----------------------------------logging.basicConfig logging.basicConfig ...
- Unity 与Mono和.Net的关系
一.分析 首先,我们要知道Unity,Mono,.Net 三者的关系.需要简单说一下.Net. .Net拥有跨语言,跨平台性. 跨语言:就是只要是面向.Net平台的编程语言,用其中一种语言编写的类型就 ...
- IOS开发---菜鸟学习之路--(一)
PS(废话): 看了那么多的博客文章,发现大部分人都一直在强调写技术博客的重要性,索性自己也耐着性子写写看吧. 写博客的重要性之类的说明,我就不做复制黏贴的工作了.因为自己没有写过多少,所也不清楚是不 ...
- linux下jenkins学习之简单安装
前提:安装包从官网获取https://pkg.jenkins.io/redhat-stable/jenkins-2.7.4-1.1.noarch.rpm 1.在线下载 Sudo -O wget htt ...